IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v66y2014icp799-809.html
   My bibliography  Save this article

Study on the performance of silica gel dehumidification system with ultrasonic-assisted regeneration

Author

Listed:
  • Yao, Ye
  • Yang, Kun
  • Liu, Shiqing

Abstract

A theoretic model is developed to describe the moisture desorption-and-adsorption cycle of silica gel dehumidification system with or without ultrasonic-assisted regeneration. The model has been validated by a series of experiments. The AMRC (additional moisture removal capacity) and the DCOP (dehumidification coefficient of performance) are suggested to illustrate the performance of silica gel dehumidification system with ultrasonic radiation. The effects of ultrasonic-assisted regeneration on the performance of the dehumidification system are investigated with the model under different conditions. Some crucial conclusions have been drawn from the simulation results, e.g., the higher regeneration temperature is conducive to increasing the AMRC; the higher ambient air temperature is conducive to increasing the AMRC and DCOP of the system; the higher ambient air humidity level will result in the bigger AMRC and the lower DCOP of the system; the higher initial moisture ratio of silica gel is in its favor for improving the DCOP, but unfavorable for increasing the AMRC; the optimal regeneration time aiming at the maximum AMRC or DCOP decreases as the regeneration temperature or the air velocity increases. And it increases as the ambient air temperature or humidity or the initial moisture content of silica gel increases.

Suggested Citation

  • Yao, Ye & Yang, Kun & Liu, Shiqing, 2014. "Study on the performance of silica gel dehumidification system with ultrasonic-assisted regeneration," Energy, Elsevier, vol. 66(C), pages 799-809.
  • Handle: RePEc:eee:energy:v:66:y:2014:i:c:p:799-809
    DOI: 10.1016/j.energy.2014.01.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214000838
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.01.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamed, Ahmed M., 2005. "Experimental investigation on the adsorption/desorption processes using solid desiccant in an inclined-fluidized bed," Renewable Energy, Elsevier, vol. 30(12), pages 1913-1921.
    2. Zhang, L.Z., 2006. "Energy performance of independent air dehumidification systems with energy recovery measures," Energy, Elsevier, vol. 31(8), pages 1228-1242.
    3. Qi, Ronghui & Tian, Changqing & Shao, Shuangquan, 2010. "Experimental investigation on possibility of electro-osmotic regeneration for solid desiccant," Applied Energy, Elsevier, vol. 87(7), pages 2266-2272, July.
    4. Singh, Sukhmeet & Singh, Parm Pal, 1998. "Regeneration of silica gel in multi-shelf regenerator," Renewable Energy, Elsevier, vol. 13(1), pages 105-119.
    5. Qi, Ronghui & Tian, Changqing & Shao, Shuangquan & Tang, Mingsheng & Lu, Lin, 2011. "Experimental investigation on performance improvement of electro-osmotic regeneration for solid desiccant," Applied Energy, Elsevier, vol. 88(8), pages 2816-2823, August.
    6. Yao, Ye, 2010. "Using power ultrasound for the regeneration of dehumidizers in desiccant air-conditioning systems: A review of prospective studies and unexplored issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1860-1873, September.
    7. Hamed, Ahmed M., 2002. "Theoretical and experimental study on the transient adsorption characteristics of a vertical packed porous bed," Renewable Energy, Elsevier, vol. 27(4), pages 525-541.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xiaoli & Qu, Ming & Liu, Xiaobing & Wang, Lingshi, 2019. "Membrane-based liquid desiccant air dehumidification: A comprehensive review on materials, components, systems and performances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 444-466.
    2. Sheng, Ying & Zhang, Yufeng & Zhang, Ge, 2015. "Simulation and energy saving analysis of high temperature heat pump coupling to desiccant wheel air conditioning system," Energy, Elsevier, vol. 83(C), pages 583-596.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Liu, Hongdou & Yang, Hongquan & Qi, Ronghui, 2020. "A review of electrically driven dehumidification technology for air-conditioning systems," Applied Energy, Elsevier, vol. 279(C).
    3. Yeboah, S.K. & Darkwa, J., 2016. "A critical review of thermal enhancement of packed beds for water vapour adsorption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1500-1520.
    4. Bhattacharya, Madhuchhanda & Basak, Tanmay, 2013. "A theoretical study on the use of microwaves in reducing energy consumption for an endothermic reaction: Role of metal coated bounding surface," Energy, Elsevier, vol. 55(C), pages 278-294.
    5. Zhang, Guiying & Tian, Changqing & Shao, Shuangquan, 2014. "Experimental investigation on adsorption and electro-osmosis regeneration of macroporous silica gel desiccant," Applied Energy, Elsevier, vol. 136(C), pages 1010-1017.
    6. Rambhad, Kishor S. & Walke, Pramod V. & Tidke, D.J., 2016. "Solid desiccant dehumidification and regeneration methods—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 73-83.
    7. Kabeel, A.E., 2009. "Adsorption–desorption operations of multilayer desiccant packed bed for dehumidification applications," Renewable Energy, Elsevier, vol. 34(1), pages 255-265.
    8. Misha, S. & Mat, S. & Ruslan, M.H. & Sopian, K., 2012. "Review of solid/liquid desiccant in the drying applications and its regeneration methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4686-4707.
    9. Qi, Ronghui & Tian, Changqing & Shao, Shuangquan & Tang, Mingsheng & Lu, Lin, 2011. "Experimental investigation on performance improvement of electro-osmotic regeneration for solid desiccant," Applied Energy, Elsevier, vol. 88(8), pages 2816-2823, August.
    10. Hamed, Ahmed M. & Abd El Rahman, Walaa R. & El-Emam, S.H., 2010. "Experimental study of the transient adsorption/desorption characteristics of silica gel particles in fluidized bed," Energy, Elsevier, vol. 35(6), pages 2468-2483.
    11. Lu, Hao & Lu, Lin & Luo, Yimo & Qi, Ronghui, 2016. "Investigation on the dynamic characteristics of the counter-current flow for liquid desiccant dehumidification," Energy, Elsevier, vol. 101(C), pages 229-238.
    12. De Antonellis, Stefano & Joppolo, Cesare Maria & Molinaroli, Luca & Pasini, Alberto, 2012. "Simulation and energy efficiency analysis of desiccant wheel systems for drying processes," Energy, Elsevier, vol. 37(1), pages 336-345.
    13. N’Tsoukpoe, Kokouvi Edem & Yamegueu, Daniel & Bassole, Justin, 2014. "Solar sorption refrigeration in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 318-335.
    14. Hamed, Ahmed M., 2005. "Experimental investigation on the adsorption/desorption processes using solid desiccant in an inclined-fluidized bed," Renewable Energy, Elsevier, vol. 30(12), pages 1913-1921.
    15. Wojciech Kalawa & Karol Sztekler & Agata Mlonka-Mędrala & Ewelina Radomska & Wojciech Nowak & Łukasz Mika & Tomasz Bujok & Piotr Boruta, 2023. "Simulation Analysis of Mechanical Fluidized Bed in Adsorption Chillers," Energies, MDPI, vol. 16(15), pages 1-22, August.
    16. Ranjbaran, M. & Zare, D., 2013. "Simulation of energetic- and exergetic performance of microwave-assisted fluidized bed drying of soybeans," Energy, Elsevier, vol. 59(C), pages 484-493.
    17. Zhang, Tao & Liu, Xiaohua & Jiang, Yi, 2014. "Development of temperature and humidity independent control (THIC) air-conditioning systems in China—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 793-803.
    18. Duan, Zhiyin & Zhan, Changhong & Zhang, Xingxing & Mustafa, Mahmud & Zhao, Xudong & Alimohammadisagvand, Behrang & Hasan, Ala, 2012. "Indirect evaporative cooling: Past, present and future potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6823-6850.
    19. Xu, Peng & Ma, Xiaoli & Zhao, Xudong & Fancey, Kevin, 2017. "Experimental investigation of a super performance dew point air cooler," Applied Energy, Elsevier, vol. 203(C), pages 761-777.
    20. Ruivo, Celestino R. & Goldsworthy, Mark & Intini, Manuel, 2014. "Interpolation methods to predict the influence of inlet airflow states on desiccant wheel performance at low regeneration temperature," Energy, Elsevier, vol. 68(C), pages 765-772.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:66:y:2014:i:c:p:799-809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.