IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i8p2816-2823.html
   My bibliography  Save this article

Experimental investigation on performance improvement of electro-osmotic regeneration for solid desiccant

Author

Listed:
  • Qi, Ronghui
  • Tian, Changqing
  • Shao, Shuangquan
  • Tang, Mingsheng
  • Lu, Lin

Abstract

Electro-osmotic regeneration for the solid desiccant has been proved to have many merits such as regeneration without the heat source; energy-saving and simple structure. However; the previous work has revealed that its performance is seriously limited by the severe Joule heating effect and electrode corrosion; which demands further improvement to meet the practical requirement. In this paper; four possible improvement methods are investigated experimentally; including changing the material of anode; changing layout of cathode; applying the interrupted power and optimizing the electrical field strength. Through detailed experiments and analysis; we found that applying the platinum-plated titanium mesh as anode could improve the working lifetime from 6 h to over 120 h and effectively reduce Joule heating effect simultaneously; laying a piece of filter cloth under the cathode could enhance the EO regeneration rate up to 0.0021 g s-1; the application of interrupted power could increase the regeneration rate up to 1.5 times; the optimal on-off-time was found at 30 s:1.3 s with 17 V cm-1 electric field strength and 30 s:0.8 s with 11 V cm-1; and the most suitable value of electric field strength was observed as ranging from 8.5 to 13 V cm-1 in our EO regeneration system.

Suggested Citation

  • Qi, Ronghui & Tian, Changqing & Shao, Shuangquan & Tang, Mingsheng & Lu, Lin, 2011. "Experimental investigation on performance improvement of electro-osmotic regeneration for solid desiccant," Applied Energy, Elsevier, vol. 88(8), pages 2816-2823, August.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:8:p:2816-2823
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(11)00073-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, L.Z., 2006. "Energy performance of independent air dehumidification systems with energy recovery measures," Energy, Elsevier, vol. 31(8), pages 1228-1242.
    2. Yao, Ye & Zhang, Weijiang & Liu, Shiqing, 2009. "Feasibility study on power ultrasound for regeneration of silica gel--A potential desiccant used in air-conditioning system," Applied Energy, Elsevier, vol. 86(11), pages 2394-2400, November.
    3. Qi, Ronghui & Tian, Changqing & Shao, Shuangquan, 2010. "Experimental investigation on possibility of electro-osmotic regeneration for solid desiccant," Applied Energy, Elsevier, vol. 87(7), pages 2266-2272, July.
    4. Zhai, X.Q. & Wang, R.Z. & Wu, J.Y. & Dai, Y.J. & Ma, Q., 2008. "Design and performance of a solar-powered air-conditioning system in a green building," Applied Energy, Elsevier, vol. 85(5), pages 297-311, May.
    5. Xiao, Fu & Ge, Gaoming & Niu, Xiaofeng, 2011. "Control performance of a dedicated outdoor air system adopting liquid desiccant dehumidification," Applied Energy, Elsevier, vol. 88(1), pages 143-149, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Guiying & Tian, Changqing & Shao, Shuangquan, 2014. "Experimental investigation on adsorption and electro-osmosis regeneration of macroporous silica gel desiccant," Applied Energy, Elsevier, vol. 136(C), pages 1010-1017.
    2. Bhattacharya, Madhuchhanda & Basak, Tanmay, 2013. "A theoretical study on the use of microwaves in reducing energy consumption for an endothermic reaction: Role of metal coated bounding surface," Energy, Elsevier, vol. 55(C), pages 278-294.
    3. Yao, Ye & Yang, Kun & Liu, Shiqing, 2014. "Study on the performance of silica gel dehumidification system with ultrasonic-assisted regeneration," Energy, Elsevier, vol. 66(C), pages 799-809.
    4. Qi, Ronghui & Li, Dujuan & Zhang, Li-Zhi, 2017. "Performance investigation on polymeric electrolyte membrane-based electrochemical air dehumidification system," Applied Energy, Elsevier, vol. 208(C), pages 1174-1183.
    5. Liu, Hongdou & Yang, Hongquan & Qi, Ronghui, 2020. "A review of electrically driven dehumidification technology for air-conditioning systems," Applied Energy, Elsevier, vol. 279(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Hongdou & Yang, Hongquan & Qi, Ronghui, 2020. "A review of electrically driven dehumidification technology for air-conditioning systems," Applied Energy, Elsevier, vol. 279(C).
    2. Ge, Gaoming & Xiao, Fu & Xu, Xinhua, 2011. "Model-based optimal control of a dedicated outdoor air-chilled ceiling system using liquid desiccant and membrane-based total heat recovery," Applied Energy, Elsevier, vol. 88(11), pages 4180-4190.
    3. Zhang, Guiying & Tian, Changqing & Shao, Shuangquan, 2014. "Experimental investigation on adsorption and electro-osmosis regeneration of macroporous silica gel desiccant," Applied Energy, Elsevier, vol. 136(C), pages 1010-1017.
    4. Rambhad, Kishor S. & Walke, Pramod V. & Tidke, D.J., 2016. "Solid desiccant dehumidification and regeneration methods—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 73-83.
    5. Xiong, Z.Q. & Dai, Y.J. & Wang, R.Z., 2010. "Development of a novel two-stage liquid desiccant dehumidification system assisted by CaCl2 solution using exergy analysis method," Applied Energy, Elsevier, vol. 87(5), pages 1495-1504, May.
    6. Abdel-Salam, Mohamed R.H. & Fauchoux, Melanie & Ge, Gaoming & Besant, Robert W. & Simonson, Carey J., 2014. "Expected energy and economic benefits, and environmental impacts for liquid-to-air membrane energy exchangers (LAMEEs) in HVAC systems: A review," Applied Energy, Elsevier, vol. 127(C), pages 202-218.
    7. Zhang, Zi-Yang & Cao, Xiang & Yang, Zhi & Shao, Liang-Liang & Zhang, Chun-Lu, 2019. "Modeling and experimental investigation of an advanced direct-expansion outdoor air dehumidification system," Applied Energy, Elsevier, vol. 242(C), pages 1600-1612.
    8. Qi, Ronghui & Lu, Lin & Yang, Hongxing & Qin, Fei, 2013. "Investigation on wetted area and film thickness for falling film liquid desiccant regeneration system," Applied Energy, Elsevier, vol. 112(C), pages 93-101.
    9. Yao, Ye & Yang, Kun & Liu, Shiqing, 2014. "Study on the performance of silica gel dehumidification system with ultrasonic-assisted regeneration," Energy, Elsevier, vol. 66(C), pages 799-809.
    10. Liu, Xiaoli & Qu, Ming & Liu, Xiaobing & Wang, Lingshi, 2019. "Membrane-based liquid desiccant air dehumidification: A comprehensive review on materials, components, systems and performances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 444-466.
    11. Kim, Min-Hwi & Park, Jun-Seok & Jeong, Jae-Weon, 2013. "Energy saving potential of liquid desiccant in evaporative-cooling-assisted 100% outdoor air system," Energy, Elsevier, vol. 59(C), pages 726-736.
    12. Angrisani, Giovanni & Roselli, Carlo & Sasso, Maurizio, 2015. "Experimental assessment of the energy performance of a hybrid desiccant cooling system and comparison with other air-conditioning technologies," Applied Energy, Elsevier, vol. 138(C), pages 533-545.
    13. Lu, Hao & Lu, Lin & Luo, Yimo & Qi, Ronghui, 2016. "Investigation on the dynamic characteristics of the counter-current flow for liquid desiccant dehumidification," Energy, Elsevier, vol. 101(C), pages 229-238.
    14. Angrisani, Giovanni & Capozzoli, Alfonso & Minichiello, Francesco & Roselli, Carlo & Sasso, Maurizio, 2011. "Desiccant wheel regenerated by thermal energy from a microcogenerator: Experimental assessment of the performances," Applied Energy, Elsevier, vol. 88(4), pages 1354-1365, April.
    15. Deng, S. & Wang, R.Z. & Dai, Y.J., 2014. "How to evaluate performance of net zero energy building – A literature research," Energy, Elsevier, vol. 71(C), pages 1-16.
    16. Reda, Francesco & Viot, Maxime & Sipilä, Kari & Helm, Martin, 2016. "Energy assessment of solar cooling thermally driven system configurations for an office building in a Nordic country," Applied Energy, Elsevier, vol. 166(C), pages 27-43.
    17. Rafati Nasr, Mohammad & Kassai, Miklos & Ge, Gaoming & Simonson, Carey J., 2015. "Evaluation of defrosting methods for air-to-air heat/energy exchangers on energy consumption of ventilation," Applied Energy, Elsevier, vol. 151(C), pages 32-40.
    18. De Antonellis, Stefano & Joppolo, Cesare Maria & Molinaroli, Luca & Pasini, Alberto, 2012. "Simulation and energy efficiency analysis of desiccant wheel systems for drying processes," Energy, Elsevier, vol. 37(1), pages 336-345.
    19. Mortazavi, Mehdi & Schmid, Michael & Moghaddam, Saeed, 2017. "Compact and efficient generator for low grade solar and waste heat driven absorption systems," Applied Energy, Elsevier, vol. 198(C), pages 173-179.
    20. Min-Hwi Kim & Joon-Young Park & Jae-Weon Jeong, 2017. "Energy Saving Potential of a Thermoelectric Heat Pump-Assisted Liquid Desiccant System in a Dedicated Outdoor Air System," Energies, MDPI, vol. 10(9), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:8:p:2816-2823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.