IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v203y2017icp761-777.html
   My bibliography  Save this article

Experimental investigation of a super performance dew point air cooler

Author

Listed:
  • Xu, Peng
  • Ma, Xiaoli
  • Zhao, Xudong
  • Fancey, Kevin

Abstract

This paper presents an experimental investigation of a super performance dew point air cooler which, by employing a super performance wet material layer, innovative heat and mass exchanger and intermittent water supply scheme, has achieved a significantly higher energy efficiency (i.e. Coefficient of Performance, COP) and a much lower electrical energy use compared to the existing air coolers of the same type. This involves the dedicated system design & construction, fully planned experimental testing under various simulated climatic conditions representing the climate of hot & dry, warm & dry, moderate, warm & humid and standard lab testing condition, testing results analysis and discussion, as well as the parallel comparison against the commercial dew point air cooler. Under the standard test condition, i.e. dry bulb temperature of 37.8°C and coincident wet bulb temperature of 21.1°C, the prototype cooler achieved the wet-bulb cooling effectiveness of 114% and dew-point cooling effectiveness of 75%, yielding a significantly high COP value of 52.5 at the optimal working air ratio of 0.364. The testing also indicated that the lower inlet air relative humidity led to a higher cooling efficiency, while the lower cooling output helped increase COP and cooling effectiveness (including the wet-bulb effectiveness and dew-point effectiveness) of the cooler.

Suggested Citation

  • Xu, Peng & Ma, Xiaoli & Zhao, Xudong & Fancey, Kevin, 2017. "Experimental investigation of a super performance dew point air cooler," Applied Energy, Elsevier, vol. 203(C), pages 761-777.
  • Handle: RePEc:eee:appene:v:203:y:2017:i:c:p:761-777
    DOI: 10.1016/j.apenergy.2017.06.095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917308528
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.06.095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhan, Changhong & Duan, Zhiyin & Zhao, Xudong & Smith, Stefan & Jin, Hong & Riffat, Saffa, 2011. "Comparative study of the performance of the M-cycle counter-flow and cross-flow heat exchangers for indirect evaporative cooling – Paving the path toward sustainable cooling of buildings," Energy, Elsevier, vol. 36(12), pages 6790-6805.
    2. Xu, Peng & Ma, Xiaoli & Diallo, Thierno M.O. & Zhao, Xudong & Fancey, Kevin & Li, Deying & Chen, Hongbing, 2016. "Numerical investigation of the energy performance of a guideless irregular heat and mass exchanger with corrugated heat transfer surface for dew point cooling," Energy, Elsevier, vol. 109(C), pages 803-817.
    3. Chua, K.J. & Chou, S.K. & Yang, W.M. & Yan, J., 2013. "Achieving better energy-efficient air conditioning – A review of technologies and strategies," Applied Energy, Elsevier, vol. 104(C), pages 87-104.
    4. Jradi, M. & Riffat, S., 2014. "Experimental and numerical investigation of a dew-point cooling system for thermal comfort in buildings," Applied Energy, Elsevier, vol. 132(C), pages 524-535.
    5. Cui, X. & Chua, K.J. & Yang, W.M., 2014. "Numerical simulation of a novel energy-efficient dew-point evaporative air cooler," Applied Energy, Elsevier, vol. 136(C), pages 979-988.
    6. Zhang, L.Z., 2006. "Energy performance of independent air dehumidification systems with energy recovery measures," Energy, Elsevier, vol. 31(8), pages 1228-1242.
    7. Campaniço, Hugo & Hollmuller, Pierre & Soares, Pedro M.M., 2014. "Assessing energy savings in cooling demand of buildings using passive cooling systems based on ventilation," Applied Energy, Elsevier, vol. 134(C), pages 426-438.
    8. Maheshwari, G. P. & Al-Ragom, F. & Suri, R. K., 2001. "Energy-saving potential of an indirect evaporative cooler," Applied Energy, Elsevier, vol. 69(1), pages 69-76, May.
    9. Chen, Qun & Pan, Ning & Guo, Zeng-Yuan, 2011. "A new approach to analysis and optimization of evaporative cooling system II: Applications," Energy, Elsevier, vol. 36(5), pages 2890-2898.
    10. Duan, Zhiyin & Zhan, Changhong & Zhang, Xingxing & Mustafa, Mahmud & Zhao, Xudong & Alimohammadisagvand, Behrang & Hasan, Ala, 2012. "Indirect evaporative cooling: Past, present and future potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6823-6850.
    11. Daou, K. & Wang, R.Z. & Xia, Z.Z., 2006. "Desiccant cooling air conditioning: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(2), pages 55-77, April.
    12. Lin, J. & Thu, K. & Bui, T.D. & Wang, R.Z. & Ng, K.C. & Kumja, M. & Chua, K.J., 2016. "Unsteady-state analysis of a counter-flow dew point evaporative cooling system," Energy, Elsevier, vol. 113(C), pages 172-185.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Jie & Bui, Duc Thuan & Wang, Ruzhu & Chua, Kian Jon, 2018. "On the fundamental heat and mass transfer analysis of the counter-flow dew point evaporative cooler," Applied Energy, Elsevier, vol. 217(C), pages 126-142.
    2. Mahmood, Muhammad H. & Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru & Maisotsenko, Valeriy S., 2016. "Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 537-555.
    3. Duan, Zhiyin & Zhan, Changhong & Zhang, Xingxing & Mustafa, Mahmud & Zhao, Xudong & Alimohammadisagvand, Behrang & Hasan, Ala, 2012. "Indirect evaporative cooling: Past, present and future potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6823-6850.
    4. Akhlaghi, Yousef Golizadeh & Ma, Xiaoli & Zhao, Xudong & Shittu, Samson & Li, Junming, 2019. "A statistical model for dew point air cooler based on the multiple polynomial regression approach," Energy, Elsevier, vol. 181(C), pages 868-881.
    5. Xiao, Xin & Liu, Jinjin, 2024. "A state-of-art review of dew point evaporative cooling technology and integrated applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    6. Yang, Hongxing & Shi, Wenchao & Chen, Yi & Min, Yunran, 2021. "Research development of indirect evaporative cooling technology: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    7. Ma, Xiaoli & Zhao, Xudong & Zhang, Yufeng & Liu, Kaixin & Yang, Hui & Li, Jing & Akhlaghi, Yousef Golizadeh & Liu, Haowen & Han, Zhonghe & Liu, Zhijian, 2022. "Combined Rankine Cycle and dew point cooler for energy efficient power generation of the power plants - A review and perspective study," Energy, Elsevier, vol. 238(PA).
    8. Muhammad Aleem & Ghulam Hussain & Muhammad Sultan & Takahiko Miyazaki & Muhammad H. Mahmood & Muhammad I. Sabir & Abdul Nasir & Faizan Shabir & Zahid M. Khan, 2020. "Experimental Investigation of Desiccant Dehumidification Cooling System for Climatic Conditions of Multan (Pakistan)," Energies, MDPI, vol. 13(21), pages 1-23, October.
    9. Pandelidis, Demis & Anisimov, Sergey & Rajski, Krzysztof & Brychcy, Ewa & Sidorczyk, Marek, 2017. "Performance comparison of the advanced indirect evaporative air coolers," Energy, Elsevier, vol. 135(C), pages 138-152.
    10. Chen, Yi & Yang, Hongxing & Luo, Yimo, 2017. "Parameter sensitivity analysis and configuration optimization of indirect evaporative cooler (IEC) considering condensation," Applied Energy, Elsevier, vol. 194(C), pages 440-453.
    11. Duan, Zhiyin & Zhao, Xudong & Li, Junming, 2017. "Design, fabrication and performance evaluation of a compact regenerative evaporative cooler: Towards low energy cooling for buildings," Energy, Elsevier, vol. 140(P1), pages 506-519.
    12. Cui, X. & Islam, M.R. & Mohan, B. & Chua, K.J., 2016. "Theoretical analysis of a liquid desiccant based indirect evaporative cooling system," Energy, Elsevier, vol. 95(C), pages 303-312.
    13. Ham, Sang-Woo & Jeong, Jae-Weon, 2016. "DPHX (dew point evaporative heat exchanger): System design and performance analysis," Energy, Elsevier, vol. 101(C), pages 132-145.
    14. Yin Bi & Yugang Wang & Xiaoli Ma & Xudong Zhao, 2017. "Investigation on the Energy Saving Potential of Using a Novel Dew Point Cooling System in Data Centres," Energies, MDPI, vol. 10(11), pages 1-21, October.
    15. Lin, J. & Thu, K. & Bui, T.D. & Wang, R.Z. & Ng, K.C. & Kumja, M. & Chua, K.J., 2016. "Unsteady-state analysis of a counter-flow dew point evaporative cooling system," Energy, Elsevier, vol. 113(C), pages 172-185.
    16. Cui, Yuanlong & Zhu, Jie & Zoras, Stamatis & Liu, Lin, 2021. "Review of the recent advances in dew point evaporative cooling technology: 3E (energy, economic and environmental) assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    17. Cui, X. & Chua, K.J. & Yang, W.M., 2014. "Numerical simulation of a novel energy-efficient dew-point evaporative air cooler," Applied Energy, Elsevier, vol. 136(C), pages 979-988.
    18. Ma, Xiaoli & Zeng, Cheng & Zhu, Zishang & Zhao, Xudong & Xiao, Xin & Akhlaghi, Yousef Golizadeh & Shittu, Samson, 2023. "Real life test of a novel super performance dew point cooling system in operational live data centre," Applied Energy, Elsevier, vol. 348(C).
    19. Kim, Hui-Jeong & Ham, Sang-Woo & Yoon, Dong-Seob & Jeong, Jae-Weon, 2017. "Cooling performance measurement of two cross-flow indirect evaporative coolers in general and regenerative operation modes," Applied Energy, Elsevier, vol. 195(C), pages 268-277.
    20. Chen, Yi & Yan, Huaxia & Yang, Hongxing, 2018. "Comparative study of on-off control and novel high-low control of regenerative indirect evaporative cooler (RIEC)," Applied Energy, Elsevier, vol. 225(C), pages 233-243.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:203:y:2017:i:c:p:761-777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.