Two-dimensional numerical study of a heat and mass exchanger for a dew-point evaporative cooler
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2018.11.135
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhan, Changhong & Duan, Zhiyin & Zhao, Xudong & Smith, Stefan & Jin, Hong & Riffat, Saffa, 2011. "Comparative study of the performance of the M-cycle counter-flow and cross-flow heat exchangers for indirect evaporative cooling – Paving the path toward sustainable cooling of buildings," Energy, Elsevier, vol. 36(12), pages 6790-6805.
- Hsu, Shyr Tzer & Lavan, Zalman & Worek, William M., 1989. "Optimization of wet-surface heat exchangers," Energy, Elsevier, vol. 14(11), pages 757-770.
- Xudong Zhao & Zhiyin Duan & Changhong Zhan & Saffa B. Riffat, 2009. "Dynamic performance of a novel dew point air conditioning for the UK buildings," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 4(1), pages 27-35, January.
- Zhang, L.Z., 2006. "Energy performance of independent air dehumidification systems with energy recovery measures," Energy, Elsevier, vol. 31(8), pages 1228-1242.
- Duan, Zhiyin & Zhan, Changhong & Zhang, Xingxing & Mustafa, Mahmud & Zhao, Xudong & Alimohammadisagvand, Behrang & Hasan, Ala, 2012. "Indirect evaporative cooling: Past, present and future potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6823-6850.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chen, Yi & Yan, Huaxia & Luo, Yimo & Yang, Hongxing, 2019. "A proportional–integral (PI) law based variable speed technology for temperature control in indirect evaporative cooling system," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Xin Cui & Le Sun & Sicong Zhang & Liwen Jin, 2019. "On the Study of a Hybrid Indirect Evaporative Pre-Cooling System for Various Climates," Energies, MDPI, vol. 12(23), pages 1-16, November.
- Sulaiman, Mohammed A. & Adham, Ahmed M. & Hasan, Hasan F. & Benim, Ali C. & Anjal, Hassan A., 2024. "Performance analysis of novel dew point evaporative cooler with shell and tube design through different air-water flow configurations," Energy, Elsevier, vol. 289(C).
- Kashyap, Sarvesh & Sarkar, Jahar & Kumar, Amitesh, 2021. "Performance enhancement of regenerative evaporative cooler by surface alterations and using ternary hybrid nanofluids," Energy, Elsevier, vol. 225(C).
- Nemati, Nasibeh & Omidvar, Amir & Rosti, Behnam, 2021. "Performance evaluation of a novel hybrid cooling system combining indirect evaporative cooler and earth-air heat exchanger," Energy, Elsevier, vol. 215(PB).
- Cui, Xin & Yang, Chuanjun & Yan, Weichao & Zhang, Lianying & Wan, Yangda & Chua, Kian Jon, 2023. "Experimental study on a moisture-conducting fiber-assisted tubular indirect evaporative cooler," Energy, Elsevier, vol. 278(PB).
- Golizadeh Akhlaghi, Yousef & Aslansefat, Koorosh & Zhao, Xudong & Sadati, Saba & Badiei, Ali & Xiao, Xin & Shittu, Samson & Fan, Yi & Ma, Xiaoli, 2021. "Hourly performance forecast of a dew point cooler using explainable Artificial Intelligence and evolutionary optimisations by 2050," Applied Energy, Elsevier, vol. 281(C).
- Shahzad, Muhammad Wakil & Lin, Jie & Xu, Ben Bin & Dala, Laurent & Chen, Qian & Burhan, Muhammad & Sultan, Muhammad & Worek, William & Ng, Kim Choon, 2021. "A spatiotemporal indirect evaporative cooler enabled by transiently interceding water mist," Energy, Elsevier, vol. 217(C).
- Xiao, Xin & Liu, Jinjin, 2024. "A state-of-art review of dew point evaporative cooling technology and integrated applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
- Yang, Hongxing & Shi, Wenchao & Chen, Yi & Min, Yunran, 2021. "Research development of indirect evaporative cooling technology: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Duan, Zhiyin & Zhan, Changhong & Zhang, Xingxing & Mustafa, Mahmud & Zhao, Xudong & Alimohammadisagvand, Behrang & Hasan, Ala, 2012. "Indirect evaporative cooling: Past, present and future potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6823-6850.
- Ham, Sang-Woo & Jeong, Jae-Weon, 2016. "DPHX (dew point evaporative heat exchanger): System design and performance analysis," Energy, Elsevier, vol. 101(C), pages 132-145.
- Xu, Peng & Ma, Xiaoli & Zhao, Xudong & Fancey, Kevin, 2017. "Experimental investigation of a super performance dew point air cooler," Applied Energy, Elsevier, vol. 203(C), pages 761-777.
- Lin, Jie & Bui, Duc Thuan & Wang, Ruzhu & Chua, Kian Jon, 2018. "On the fundamental heat and mass transfer analysis of the counter-flow dew point evaporative cooler," Applied Energy, Elsevier, vol. 217(C), pages 126-142.
- Duan, Zhiyin & Zhao, Xudong & Li, Junming, 2017. "Design, fabrication and performance evaluation of a compact regenerative evaporative cooler: Towards low energy cooling for buildings," Energy, Elsevier, vol. 140(P1), pages 506-519.
- Cui, X. & Islam, M.R. & Mohan, B. & Chua, K.J., 2016. "Theoretical analysis of a liquid desiccant based indirect evaporative cooling system," Energy, Elsevier, vol. 95(C), pages 303-312.
- Lin, J. & Thu, K. & Bui, T.D. & Wang, R.Z. & Ng, K.C. & Kumja, M. & Chua, K.J., 2016. "Unsteady-state analysis of a counter-flow dew point evaporative cooling system," Energy, Elsevier, vol. 113(C), pages 172-185.
- Cui, X. & Chua, K.J. & Yang, W.M., 2014. "Numerical simulation of a novel energy-efficient dew-point evaporative air cooler," Applied Energy, Elsevier, vol. 136(C), pages 979-988.
- Wang, Lei & Zhan, Changhong & Zhang, Jianli & Zhao, Xudong, 2019. "Optimization of the counter-flow heat and mass exchanger for M-Cycle indirect evaporative cooling assisted with entropy analysis," Energy, Elsevier, vol. 171(C), pages 1206-1216.
- Zanchini, Enzo & Naldi, Claudia, 2019. "Energy saving obtainable by applying a commercially available M-cycle evaporative cooling system to the air conditioning of an office building in North Italy," Energy, Elsevier, vol. 179(C), pages 975-988.
- Anisimov, Sergey & Pandelidis, Demis & Jedlikowski, Andrzej & Polushkin, Vitaliy, 2014. "Performance investigation of a M (Maisotsenko)-cycle cross-flow heat exchanger used for indirect evaporative cooling," Energy, Elsevier, vol. 76(C), pages 593-606.
- Yugang Wang & Xiang Huang & Li Li, 2018. "Comparative Study of the Cross-Flow Heat and Mass Exchangers for Indirect Evaporative Cooling Using Numerical Methods," Energies, MDPI, vol. 11(12), pages 1-14, December.
- Mahmood, Muhammad H. & Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru & Maisotsenko, Valeriy S., 2016. "Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 537-555.
- Demis Pandelidis & Sergey Anisimov & Paweł Drąg, 2017. "Performance Comparison between Selected Evaporative Air Coolers," Energies, MDPI, vol. 10(4), pages 1-20, April.
- Pandelidis, Demis & Cichoń, Aleksandra & Pacak, Anna & Anisimov, Sergey & Drąg, Paweł, 2018. "Counter-flow indirect evaporative cooler for heat recovery in the temperate climate," Energy, Elsevier, vol. 165(PA), pages 877-894.
- Ma, Xiaoli & Zhao, Xudong & Zhang, Yufeng & Liu, Kaixin & Yang, Hui & Li, Jing & Akhlaghi, Yousef Golizadeh & Liu, Haowen & Han, Zhonghe & Liu, Zhijian, 2022. "Combined Rankine Cycle and dew point cooler for energy efficient power generation of the power plants - A review and perspective study," Energy, Elsevier, vol. 238(PA).
- Yang, Yifan & Cui, Gary & Lan, Christopher Q., 2019. "Developments in evaporative cooling and enhanced evaporative cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
- Elsarrag, Esam & Igobo, Opubo N. & Alhorr, Yousef & Davies, Philip A., 2016. "Solar pond powered liquid desiccant evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 124-140.
- Pandelidis, Demis & Anisimov, Sergey & Rajski, Krzysztof & Brychcy, Ewa & Sidorczyk, Marek, 2017. "Performance comparison of the advanced indirect evaporative air coolers," Energy, Elsevier, vol. 135(C), pages 138-152.
- Chen, Yi & Yang, Hongxing & Luo, Yimo, 2017. "Parameter sensitivity analysis and configuration optimization of indirect evaporative cooler (IEC) considering condensation," Applied Energy, Elsevier, vol. 194(C), pages 440-453.
More about this item
Keywords
Dew-point; Evaporative cooler; Heat and mass exchanger; Numerical study;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:168:y:2019:i:c:p:975-988. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.