IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v144y2021ics1364032121002872.html
   My bibliography  Save this article

Cell wall hemicellulose for sustainable industrial utilization

Author

Listed:
  • Qaseem, Mirza Faisal
  • Shaheen, Humaira
  • Wu, Ai-Min

Abstract

Despite a steady decline in fossil resources in past few decades, demand for petroleum-based chemicals and polymers has increased sharply. As the dead end of the petroleum industry has begun to emerge, mankind must immediately seek for alternative energy and other biopolymer resources. Hemicellulose being an abundant component of lignocellulosic biomass, may serve as a promising alternative for replacing dwindling fossil resources with many important fuels and biopolymers such as furfural, HMF, etc. Utilization of hemicellulose in the present review is divided into two sections; in the first section, products manufactured in the industry by direct modification of hemicellulose either by attaching different functional groups or other polymers are discussed, while in the second section, products or polymers produced by hemicellulose degradation are discussed along with their use. Modifying hemicellulose with different functional groups enhances their reactivity and has extensive utilization in medicine, food, packaging, and many other industries. Likewise, downstream compounds derived from hemicellulose degradation can be used as fuel additives, plastics, etc. Xylose is the main sugar derived from xylan and is utilized in almost all products discussed in this review. Metabolic engineering assisted conversion of xylose is booming the hemicellulose utilization in the biobased industry. Further improvement in microbes and synthesis pathways, coupled with the advent of new technologies would lead to extensive use of hemicellulose in biofuel and biopolymer industries. The present review paper presents the current research about hemicellulose utilization and thus encourages in-depth studies in this area.

Suggested Citation

  • Qaseem, Mirza Faisal & Shaheen, Humaira & Wu, Ai-Min, 2021. "Cell wall hemicellulose for sustainable industrial utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
  • Handle: RePEc:eee:rensus:v:144:y:2021:i:c:s1364032121002872
    DOI: 10.1016/j.rser.2021.110996
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121002872
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.110996?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Aghbashlo, Mortaza & Karimi, Keikhosro & Tabatabaei, Meisam, 2020. "Conversion of residues from agro-food industry into bioethanol in Iran: An under-valued biofuel additive to phase out MTBE in gasoline," Renewable Energy, Elsevier, vol. 145(C), pages 699-710.
    2. Fockink, Douglas H. & Morais, Ana R.C. & Ramos, Luiz P. & Łukasik, Rafał M., 2018. "Insight into the high-pressure CO2 pre-treatment of sugarcane bagasse for a delivery of upgradable sugars," Energy, Elsevier, vol. 151(C), pages 536-544.
    3. Thomas J. Simmons & Jenny C. Mortimer & Oigres D. Bernardinelli & Ann-Christin Pöppler & Steven P. Brown & Eduardo R. deAzevedo & Ray Dupree & Paul Dupree, 2016. "Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR," Nature Communications, Nature, vol. 7(1), pages 1-9, December.
    4. Ngamsirisomsakul, Marika & Reungsang, Alissara & Liao, Qiang & Kongkeitkajorn, Mallika Boonmee, 2019. "Enhanced bio-ethanol production from Chlorella sp. biomass by hydrothermal pretreatment and enzymatic hydrolysis," Renewable Energy, Elsevier, vol. 141(C), pages 482-492.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Petronela Nechita & Mirela Roman & Alina Cantaragiu Ceoromila & Andreea Veronica Dediu Botezatu, 2022. "Improving Barrier Properties of Xylan-Coated Food Packaging Papers with Alkyl Ketene Dimer," Sustainability, MDPI, vol. 14(23), pages 1-14, December.
    2. Petronela Nechita & Roman Mirela & Florin Ciolacu, 2021. "Xylan Hemicellulose: A Renewable Material with Potential Properties for Food Packaging Applications," Sustainability, MDPI, vol. 13(24), pages 1-16, December.
    3. Aktas, Fatih & Mavukwana, Athi-enkosi & Burra, Kiran Raj Goud & Gupta, Ashwani K., 2024. "Role of spent FCC catalyst in pyrolysis and CO2-assisted gasification of pinewood," Applied Energy, Elsevier, vol. 366(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Araghi, Mansour Khalili & Barkhordari, Sajjad & Hassannia, Razeih, 2023. "Economic impacts of producing bioethanol in Iran: A CGE approach," Energy, Elsevier, vol. 263(PC).
    3. Debnath, Chandrani & Bandyopadhyay, Tarun Kanti & Bhunia, Biswanath & Mishra, Umesh & Narayanasamy, Selvaraju & Muthuraj, Muthusivaramapandian, 2021. "Microalgae: Sustainable resource of carbohydrates in third-generation biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Shokrkar, Hanieh & Keighobadi, Amin, 2022. "Effect of fluid hydrodynamic situations on enzymatic hydrolysis of mixed microalgae: Experimental study and simulation," Energy, Elsevier, vol. 241(C).
    5. Zhiyou Zong & Scott Mazurkewich & Caroline S. Pereira & Haohao Fu & Wensheng Cai & Xueguang Shao & Munir S. Skaf & Johan Larsbrink & Leila Lo Leggio, 2022. "Mechanism and biomass association of glucuronoyl esterase: an α/β hydrolase with potential in biomass conversion," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Aguirre-Fierro, Arelí & Ruiz, Héctor A. & Cerqueira, Miguel A. & Ramos-González, Rodolfo & Rodríguez-Jasso, Rosa M. & Marques, Susana & Lukasik, Rafal M., 2020. "Sustainable approach of high-pressure agave bagasse pretreatment for ethanol production," Renewable Energy, Elsevier, vol. 155(C), pages 1347-1354.
    7. Borujeni, Nasim Espah & Alavijeh, Masih Karimi & Denayer, Joeri F.M. & Karimi, Keikhosro, 2023. "A novel integrated biorefinery approach for apple pomace valorization with significant socioeconomic benefits," Renewable Energy, Elsevier, vol. 208(C), pages 275-286.
    8. Dhandayuthapani, K. & Kumar, P. Senthil & Chia, Wen Yi & Chew, Kit Wayne & Karthik, V. & Selvarangaraj, H. & Selvakumar, P. & Sivashanmugam, P. & Show, Pau Loke, 2022. "Bioethanol from hydrolysate of ultrasonic processed robust microalgal biomass cultivated in dairy wastewater under optimal strategy," Energy, Elsevier, vol. 244(PA).
    9. Dehhaghi, Mona & Kazemi Shariat Panahi, Hamed & Aghbashlo, Mortaza & Lam, Su Shiung & Tabatabaei, Meisam, 2021. "The effects of nanoadditives on the performance and emission characteristics of spark-ignition gasoline engines: A critical review with a focus on health impacts," Energy, Elsevier, vol. 225(C).
    10. Hao, Jingyuan & Qi, Baojin & Li, Dong & Zeng, Feiya, 2021. "Catalytic co-pyrolysis of rice straw and ulva prolifera macroalgae: Effects of process parameter on bio-oil up-gradation," Renewable Energy, Elsevier, vol. 164(C), pages 460-471.
    11. Nishu, & Li, Chong & Chai, Meiyun & Rahman, Md. Maksudur & Li, Yingkai & Sarker, Manobendro & Liu, Ronghou, 2021. "Performance of alkali and Ni-modified ZSM-5 during catalytic pyrolysis of extracted hemicellulose from rice straw for the production of aromatic hydrocarbons," Renewable Energy, Elsevier, vol. 175(C), pages 936-951.
    12. Shahbeik, Hossein & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Guillemin, Gilles J. & Fallahi, Alireza & Hosseinzadeh-Bandbafha, Homa & Amiri, Hamid & Rehan, Mohammad & Raikwar, Deepak & Latine, , 2024. "Biomass to biofuels using hydrothermal liquefaction: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    13. Deb, Dipanwita & Mallick, Nirupama & Bhadoria, P.B.S., 2021. "Engineering culture medium for enhanced carbohydrate accumulation in Anabaena variabilis to stimulate production of bioethanol and other high-value co-products under cyanobacterial refinery approach," Renewable Energy, Elsevier, vol. 163(C), pages 1786-1801.
    14. Kavitha, S. & Gajendran, T. & Saranya, K. & Selvakumar, P. & Manivasagan, V., 2021. "Study on consolidated bioprocessing of pre-treated Nannochloropsis gaditana biomass into ethanol under optimal strategy," Renewable Energy, Elsevier, vol. 172(C), pages 440-452.
    15. Duarte Souza Alvarenga Santos, Nathália & Rückert Roso, Vinícius & Teixeira Malaquias, Augusto César & Coelho Baêta, José Guilherme, 2021. "Internal combustion engines and biofuels: Examining why this robust combination should not be ignored for future sustainable transportation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    16. Kim, Sojung & Kim, Sumin, 2022. "Hybrid simulation framework for the production management of an ethanol biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    17. Duarte, Alexandra & Uribe, Juan Carlos & Sarache, William & Calderón, Andrés, 2021. "Economic, environmental, and social assessment of bioethanol production using multiple coffee crop residues," Energy, Elsevier, vol. 216(C).
    18. Malitha C. Dickwella Widanage & Isha Gautam & Daipayan Sarkar & Frederic Mentink-Vigier & Josh V. Vermaas & Shi-You Ding & Andrew S. Lipton & Thierry Fontaine & Jean-Paul Latgé & Ping Wang & Tuo Wang, 2024. "Adaptative survival of Aspergillus fumigatus to echinocandins arises from cell wall remodeling beyond β−1,3-glucan synthesis inhibition," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Bukkarapu, Kiran Raj & Krishnasamy, Anand, 2022. "A critical review on available models to predict engine fuel properties of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    20. Jafari Olia, Mahroo Seyed & Azin, Mehrdad & Moazami, Nasrin, 2022. "Application of a statistical design to evaluate bioethanol production from Chlorella S4 biomass after acid - Thermal pretreatment," Renewable Energy, Elsevier, vol. 182(C), pages 60-68.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:144:y:2021:i:c:s1364032121002872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.