IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v208y2023icp275-286.html
   My bibliography  Save this article

A novel integrated biorefinery approach for apple pomace valorization with significant socioeconomic benefits

Author

Listed:
  • Borujeni, Nasim Espah
  • Alavijeh, Masih Karimi
  • Denayer, Joeri F.M.
  • Karimi, Keikhosro

Abstract

Ethanolic organosolv pretreatment was used to enhance the yield of ethanol production from apple pomace through a biorefinery. The pretreatment was conducted at various conditions (100, 150, and 180 °C; 30 and 60 min; 50 and 85% ethanol) in the absence or presence of 0.5% sulfuric acid. Then, pectin was extracted from the pretreatment liquor, the solvent (i.e., ethanol) was recovered by distillation, lignin was separated, and the pretreated solid was subjected to simultaneous saccharification and fermentation for ethanol production. The highest ethanol yield was achieved when the pretreatment was performed at 100 °C for 30 min with 50% ethanol in the absence of sulfuric acid, giving an overall yield of 173.3 g ethanol per 1 kg of untreated pomace. Besides, under these conditions, the amounts of extracted pectin and lignin were 76 g and 3 g per each kg of the untreated pomace, respectively. The study of socioeconomic impacts of the optimized biorefinery indicated that a total of 59.3 million liters of ethanol could potentially be generated from collectible apple pomace in Iran per annum, leading to a significant reduction in well-to-wheel greenhouse gas emissions of 84.9 and 85.6 (kt CO2 equivalent) using apple-pomace-ethanol-blended fuels of E85 and E10, respectively.

Suggested Citation

  • Borujeni, Nasim Espah & Alavijeh, Masih Karimi & Denayer, Joeri F.M. & Karimi, Keikhosro, 2023. "A novel integrated biorefinery approach for apple pomace valorization with significant socioeconomic benefits," Renewable Energy, Elsevier, vol. 208(C), pages 275-286.
  • Handle: RePEc:eee:renene:v:208:y:2023:i:c:p:275-286
    DOI: 10.1016/j.renene.2023.03.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123003518
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.03.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Borujeni, Nasim Espah & Karimi, Keikhosro & Denayer, Joeri F.M. & Kumar, Rajeev, 2022. "Apple pomace biorefinery for ethanol, mycoprotein, and value-added biochemicals production by Mucor indicus," Energy, Elsevier, vol. 240(C).
    2. Sarkar, Nibedita & Ghosh, Sumanta Kumar & Bannerjee, Satarupa & Aikat, Kaustav, 2012. "Bioethanol production from agricultural wastes: An overview," Renewable Energy, Elsevier, vol. 37(1), pages 19-27.
    3. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1204-1220.
    4. Jonker, J.G.G. & Junginger, H.M. & Verstegen, J.A. & Lin, T. & Rodríguez, L.F. & Ting, K.C. & Faaij, A.P.C. & van der Hilst, F., 2016. "Supply chain optimization of sugarcane first generation and eucalyptus second generation ethanol production in Brazil," Applied Energy, Elsevier, vol. 173(C), pages 494-510.
    5. Cebreiros, Florencia & Clavijo, Leonardo & Boix, Elzeario & Ferrari, Mario Daniel & Lareo, Claudia, 2020. "Integrated valorization of eucalyptus sawdust within a biorefinery approach by autohydrolysis and organosolv pretreatments," Renewable Energy, Elsevier, vol. 149(C), pages 115-127.
    6. Ajmi, Ahdi Noomen & Inglesi-Lotz, Roula, 2020. "Biomass energy consumption and economic growth nexus in OECD countries: A panel analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1649-1654.
    7. Luo, Jing & Ma, Yicong & Xu, Yong, 2020. "Valorization of apple pomace using a two-step slightly acidic processing strategy," Renewable Energy, Elsevier, vol. 152(C), pages 793-798.
    8. Saini, Jitendra Kumar & Patel, Anil Kumar & Adsul, Mukund & Singhania, Reeta Rani, 2016. "Cellulase adsorption on lignin: A roadblock for economic hydrolysis of biomass," Renewable Energy, Elsevier, vol. 98(C), pages 29-42.
    9. Molaverdi, Maryam & Karimi, Keikhosro & Mirmohamadsadeghi, Safoora & Galbe, Mats, 2021. "High efficient ethanol production from corn stover by modified mild alkaline pretreatment," Renewable Energy, Elsevier, vol. 170(C), pages 714-723.
    10. Silva Ortiz, Pablo & de Oliveira, Silvio, 2014. "Exergy analysis of pretreatment processes of bioethanol production based on sugarcane bagasse," Energy, Elsevier, vol. 76(C), pages 130-138.
    11. Sukumaran, Rajeev K. & Singhania, Reeta Rani & Mathew, Gincy Marina & Pandey, Ashok, 2009. "Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production," Renewable Energy, Elsevier, vol. 34(2), pages 421-424.
    12. Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Aghbashlo, Mortaza & Karimi, Keikhosro & Tabatabaei, Meisam, 2020. "Conversion of residues from agro-food industry into bioethanol in Iran: An under-valued biofuel additive to phase out MTBE in gasoline," Renewable Energy, Elsevier, vol. 145(C), pages 699-710.
    13. Abedini, Amirmohammad & Amiri, Hamid & Karimi, Keikhosro, 2020. "Efficient biobutanol production from potato peel wastes by separate and simultaneous inhibitors removal and pretreatment," Renewable Energy, Elsevier, vol. 160(C), pages 269-277.
    14. Hashemi, Seyed Sajad & Mirmohamadsadeghi, Safoora & Karimi, Keikhosro, 2020. "Biorefinery development based on whole safflower plant," Renewable Energy, Elsevier, vol. 152(C), pages 399-408.
    15. Dhillon, Gurpreet Singh & Kaur, Surinder & Brar, Satinder Kaur, 2013. "Perspective of apple processing wastes as low-cost substrates for bioproduction of high value products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 789-805.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alfred Błaszczyk & Sylwia Sady & Bogdan Pachołek & Dominika Jakubowska & Mariola Grzybowska-Brzezińska & Małgorzata Krzywonos & Stanisław Popek, 2024. "Sustainable Management Strategies for Fruit Processing Byproducts for Biorefineries: A Review," Sustainability, MDPI, vol. 16(5), pages 1-22, February.
    2. Xie, Xinyu & Song, Kai & Wang, Jing & Hu, Jinguang & Wu, Shufang & Chu, Qiulu, 2024. "Efficient ethanol production from masson pine sawdust by various organosolv pretreatment and modified pre-hydrolysis simultaneous saccharification and fermentation," Renewable Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borujeni, Nasim Espah & Karimi, Keikhosro & Denayer, Joeri F.M. & Kumar, Rajeev, 2022. "Apple pomace biorefinery for ethanol, mycoprotein, and value-added biochemicals production by Mucor indicus," Energy, Elsevier, vol. 240(C).
    2. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Song, Younho & Cho, Eun Jin & Park, Chan Song & Oh, Chi Hoon & Park, Bok-Jae & Bae, Hyeun-Jong, 2019. "A strategy for sequential fermentation by Saccharomyces cerevisiae and Pichia stipitis in bioethanol production from hardwoods," Renewable Energy, Elsevier, vol. 139(C), pages 1281-1289.
    4. Awasthi, Mukesh Kumar & Ferreira, Jorge A. & Sirohi, Ranjna & Sarsaiya, Surendra & Khoshnevisan, Benyamin & Baladi, Samin & Sindhu, Raveendran & Binod, Parameswaran & Pandey, Ashok & Juneja, Ankita & , 2021. "A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    5. Pinto, Ariane S.S. & Brondi, Mariana G. & de Freitas, Juliana V. & Furlan, Felipe F. & Ribeiro, Marcelo P.A. & Giordano, Roberto C. & Farinas, Cristiane S., 2021. "Mitigating the negative impact of soluble and insoluble lignin in biorefineries," Renewable Energy, Elsevier, vol. 173(C), pages 1017-1026.
    6. Bensah, Edem Cudjoe & Kemausuor, Francis & Miezah, Kodwo & Kádár, Zsófia & Mensah, Moses, 2015. "African perspective on cellulosic ethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1-11.
    7. Chen, Jiaxin & Zhang, Biying & Luo, Lingli & Zhang, Fan & Yi, Yanglei & Shan, Yuanyuan & Liu, Bianfang & Zhou, Yuan & Wang, Xin & Lü, Xin, 2021. "A review on recycling techniques for bioethanol production from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    8. Yang, Xiaoguang & Choi, Han Suk & Park, Chulhwan & Kim, Seung Wook, 2015. "Current states and prospects of organic waste utilization for biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 335-349.
    9. Zhao, Xihua & Yi, Shi & Li, Hanxin, 2019. "The optimized co-cultivation system of Penicillium oxalicum 16 and Trichoderma reesei RUT-C30 achieved a high yield of hydrolase applied in second-generation bioethanol production," Renewable Energy, Elsevier, vol. 136(C), pages 1028-1035.
    10. Dehhaghi, Mona & Kazemi Shariat Panahi, Hamed & Aghbashlo, Mortaza & Lam, Su Shiung & Tabatabaei, Meisam, 2021. "The effects of nanoadditives on the performance and emission characteristics of spark-ignition gasoline engines: A critical review with a focus on health impacts," Energy, Elsevier, vol. 225(C).
    11. Melendez, Jesus R. & Mátyás, Bence & Hena, Sufia & Lowy, Daniel A. & El Salous, Ahmed, 2022. "Perspectives in the production of bioethanol: A review of sustainable methods, technologies, and bioprocesses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    12. Shahbeik, Hossein & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Guillemin, Gilles J. & Fallahi, Alireza & Hosseinzadeh-Bandbafha, Homa & Amiri, Hamid & Rehan, Mohammad & Raikwar, Deepak & Latine, , 2024. "Biomass to biofuels using hydrothermal liquefaction: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    13. Osman, Ahmed I. & Qasim, Umair & Jamil, Farrukh & Al-Muhtaseb, Ala'a H. & Jrai, Ahmad Abu & Al-Riyami, Mohammed & Al-Maawali, Suhaib & Al-Haj, Lamya & Al-Hinai, Amer & Al-Abri, Mohammed & Inayat, Abra, 2021. "Bioethanol and biodiesel: Bibliometric mapping, policies and future needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    14. Duarte Souza Alvarenga Santos, Nathália & Rückert Roso, Vinícius & Teixeira Malaquias, Augusto César & Coelho Baêta, José Guilherme, 2021. "Internal combustion engines and biofuels: Examining why this robust combination should not be ignored for future sustainable transportation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    15. Thota, Sai Praneeth & Badiya, Pradeep Kumar & Yerram, Sandeep & Vadlani, Praveen V. & Pandey, Meera & Golakoti, Nageswara Rao & Belliraj, Siva Kumar & Dandamudi, Rajesh Babu & Ramamurthy, Sai Sathish, 2017. "Macro-micro fungal cultures synergy for innovative cellulase enzymes production and biomass structural analyses," Renewable Energy, Elsevier, vol. 103(C), pages 766-773.
    16. Ebrahimian, Elham & Denayer, Joeri F.M. & Aghbashlo, Mortaza & Tabatabaei, Meisam & Karimi, Keikhosro, 2022. "Biomethane and biodiesel production from sunflower crop: A biorefinery perspective," Renewable Energy, Elsevier, vol. 200(C), pages 1352-1361.
    17. Singhania, Reeta Rani & Ruiz, Héctor A. & Awasthi, Mukesh Kumar & Dong, Cheng-Di & Chen, Chiu-Wen & Patel, Anil Kumar, 2021. "Challenges in cellulase bioprocess for biofuel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    18. Radhakumari, Muktham & Taha, Mohamed & Shahsavari, Esmaeil & Bhargava, Suresh K. & Satyavathi, Bankupalli & Ball, Andrew S., 2017. "Pongamia pinnata seed residue – A low cost inedible resource for on-site/in-house lignocellulases and sustainable ethanol production," Renewable Energy, Elsevier, vol. 103(C), pages 682-687.
    19. Alejandro Moure Abelenda & Kirk T. Semple & George Aggidis & Farid Aiouache, 2022. "Circularity of Bioenergy Residues: Acidification of Anaerobic Digestate Prior to Addition of Wood Ash," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    20. Bayrakci, Asiye Gül & Koçar, Günnur, 2014. "Second-generation bioethanol production from water hyacinth and duckweed in Izmir: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 306-316.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:208:y:2023:i:c:p:275-286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.