IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p843-d320811.html
   My bibliography  Save this article

Exergy as Criteria for Efficient Energy Systems—A Spatially Resolved Comparison of the Current Exergy Consumption, the Current Useful Exergy Demand and Renewable Exergy Potential

Author

Listed:
  • Christoph Sejkora

    (Chair of Energy Network Technology, Montanuniversitaet Leoben, Franz-Josef Straße 18, A-8700 Leoben, Austria)

  • Lisa Kühberger

    (Chair of Energy Network Technology, Montanuniversitaet Leoben, Franz-Josef Straße 18, A-8700 Leoben, Austria)

  • Fabian Radner

    (HyCentA Research GmbH, Inffeldgasse 15, A-8010 Graz, Austria)

  • Alexander Trattner

    (HyCentA Research GmbH, Inffeldgasse 15, A-8010 Graz, Austria)

  • Thomas Kienberger

    (Chair of Energy Network Technology, Montanuniversitaet Leoben, Franz-Josef Straße 18, A-8700 Leoben, Austria)

Abstract

The energy transition from fossil-based energy sources to renewable energy sources of an industrialized country is a big challenge and needs major systemic changes to the energy supply. Such changes require a holistic view of the energy system, which includes both renewable potentials and consumption. Thereby exergy, which describes the quality of energy, must also be considered. In this work, the determination and analysis of such a holistic view of a country are presented, using Austria as an example. The methodology enables the calculation of the spatially resolved current exergy consumption, the spatially resolved current useful exergy demand and the spatially resolved technical potential of renewable energy sources (RES). Top-down and bottom-up approaches are combined in order to increase accuracy. We found that, currently, Austria cannot self-supply with exergy using only RES. Therefore, Austria should increase the efficiency of its energy system, since the overall exergy efficiency is only at 34%. The spatially resolved analysis shows that in Austria the exergy potential of RES is rather evenly distributed. In contrast, the exergy consumption is concentrated in urban and industrial areas. Therefore, the future energy infrastructure must compensate for these spatial discrepancies.

Suggested Citation

  • Christoph Sejkora & Lisa Kühberger & Fabian Radner & Alexander Trattner & Thomas Kienberger, 2020. "Exergy as Criteria for Efficient Energy Systems—A Spatially Resolved Comparison of the Current Exergy Consumption, the Current Useful Exergy Demand and Renewable Exergy Potential," Energies, MDPI, vol. 13(4), pages 1-51, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:843-:d:320811
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/843/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/843/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ingeborg Graabak & Magnus Korpås, 2016. "Variability Characteristics of European Wind and Solar Power Resources—A Review," Energies, MDPI, vol. 9(6), pages 1-31, June.
    2. Sciubba, Enrico & Ulgiati, Sergio, 2005. "Emergy and exergy analyses: Complementary methods or irreducible ideological options?," Energy, Elsevier, vol. 30(10), pages 1953-1988.
    3. Utlu, Zafer & Hepbasli, Arif, 2007. "A review on analyzing and evaluating the energy utilization efficiency of countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(1), pages 1-29, January.
    4. Koroneos, Christopher J. & Nanaki, Evanthia A. & Xydis, George A., 2011. "Exergy analysis of the energy use in Greece," Energy Policy, Elsevier, vol. 39(5), pages 2475-2481, May.
    5. Jack Miller & Timothy J. Foxon & Steve Sorrell, 2016. "Exergy Accounting: A Quantitative Comparison of Methods and Implications for Energy-Economy Analysis," Energies, MDPI, vol. 9(11), pages 1-22, November.
    6. Li, Wenliang & Zhou, Yuyu & Cetin, Kristen & Eom, Jiyong & Wang, Yu & Chen, Gang & Zhang, Xuesong, 2017. "Modeling urban building energy use: A review of modeling approaches and procedures," Energy, Elsevier, vol. 141(C), pages 2445-2457.
    7. Ramachandra, T.V. & Shruthi, B.V., 2007. "Spatial mapping of renewable energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1460-1480, September.
    8. Sciubba, Enrico, 2019. "Exergy-based ecological indicators: From Thermo-Economics to cumulative exergy consumption to Thermo-Ecological Cost and Extended Exergy Accounting," Energy, Elsevier, vol. 168(C), pages 462-476.
    9. Angelis-Dimakis, Athanasios & Biberacher, Markus & Dominguez, Javier & Fiorese, Giulia & Gadocha, Sabine & Gnansounou, Edgard & Guariso, Giorgio & Kartalidis, Avraam & Panichelli, Luis & Pinedo, Irene, 2011. "Methods and tools to evaluate the availability of renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1182-1200, February.
    10. Jørgensen, S.E. & Nors Nielsen, Søren, 2007. "Application of exergy as thermodynamic indicator in ecology," Energy, Elsevier, vol. 32(5), pages 673-685.
    11. Paul Waide & Conrad U. Brunner, 2011. "Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems," IEA Energy Papers 2011/7, OECD Publishing.
    12. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    13. Raúl Arango-Miranda & Robert Hausler & Rabindranarth Romero-López & Mathias Glaus & Sara Patricia Ibarra-Zavaleta, 2018. "An Overview of Energy and Exergy Analysis to the Industrial Sector, a Contribution to Sustainability," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    14. Lazzaretto, Andrea & Tsatsaronis, George, 2006. "SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems," Energy, Elsevier, vol. 31(8), pages 1257-1289.
    15. Lore Abart-Heriszt & Susanna Erker & Gernot Stoeglehner, 2019. "The Energy Mosaic Austria—A Nationwide Energy and Greenhouse Gas Inventory on Municipal Level as Action Field of Integrated Spatial and Energy Planning," Energies, MDPI, vol. 12(16), pages 1-22, August.
    16. Lauterbach, C. & Schmitt, B. & Jordan, U. & Vajen, K., 2012. "The potential of solar heat for industrial processes in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5121-5130.
    17. Fumo, Nelson & Rafe Biswas, M.A., 2015. "Regression analysis for prediction of residential energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 332-343.
    18. Lozano, M.A. & Valero, A., 1993. "Theory of the exergetic cost," Energy, Elsevier, vol. 18(9), pages 939-960.
    19. Park, S.R. & Pandey, A.K. & Tyagi, V.V. & Tyagi, S.K., 2014. "Energy and exergy analysis of typical renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 105-123.
    20. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    21. Koopmans, Carl C. & te Velde, Dirk Willem, 2001. "Bridging the energy efficiency gap: using bottom-up information in a top-down energy demand model," Energy Economics, Elsevier, vol. 23(1), pages 57-75, January.
    22. Fleiter, Tobias & Worrell, Ernst & Eichhammer, Wolfgang, 2011. "Barriers to energy efficiency in industrial bottom-up energy demand models--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3099-3111, August.
    23. Scarlat, Nicolae & Fahl, Fernando & Dallemand, Jean-François & Monforti, Fabio & Motola, Vicenzo, 2018. "A spatial analysis of biogas potential from manure in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 915-930.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lukas Kriechbaum & Philipp Gradl & Romeo Reichenhauser & Thomas Kienberger, 2020. "Modelling Grid Constraints in a Multi-Energy Municipal Energy System Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(15), pages 1-23, July.
    2. Matthias Greiml & Florian Fritz & Josef Steinegger & Theresa Schlömicher & Nicholas Wolf Williams & Negar Zaghi & Thomas Kienberger, 2022. "Modelling and Simulation/Optimization of Austria’s National Multi-Energy System with a High Degree of Spatial and Temporal Resolution," Energies, MDPI, vol. 15(10), pages 1-33, May.
    3. Robert Gaugl & Mark Sommer & Claudia Kettner & Udo Bachhiesl & Thomas Florian Klatzer & Lia Gruber & Michael Böheim & Kurt Kratena & Sonja Wogrin, 2023. "Integrated Power and Economic Analysis of Austria's Renewable Electricity Transformation," WIFO Working Papers 657, WIFO.
    4. Christoph Sejkora & Johannes Lindorfer & Lisa Kühberger & Thomas Kienberger, 2021. "Interlinking the Renewable Electricity and Gas Sectors: A Techno-Economic Case Study for Austria," Energies, MDPI, vol. 14(19), pages 1-38, October.
    5. Sejkora, Christoph & Kühberger, Lisa & Radner, Fabian & Trattner, Alexander & Kienberger, Thomas, 2022. "Exergy as criteria for efficient energy systems – Maximising energy efficiency from resource to energy service, an Austrian case study," Energy, Elsevier, vol. 239(PC).
    6. Greiml, Matthias & Fritz, Florian & Kienberger, Thomas, 2021. "Increasing installable photovoltaic power by implementing power-to-gas as electricity grid relief – A techno-economic assessment," Energy, Elsevier, vol. 235(C).
    7. Claudia Kettner & Michael Böheim & Mark Sommer & Robert Gaugl & Udo Bachhiesl & Lia Gruber & Thomas Florian Klatzer & Sonja Wogrin & Kurt Kratena, 2023. "Transformation to a Renewable Electricity System in Austria. Insights from an Integrated Model Analysis," WIFO Working Papers 658, WIFO.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Eriksson & Jan Akander & Bahram Moshfegh, 2022. "Investigating Energy Use in a City District in Nordic Climate Using Energy Signature," Energies, MDPI, vol. 15(5), pages 1-22, March.
    2. Aurora Greta Ruggeri & Laura Gabrielli & Massimiliano Scarpa, 2020. "Energy Retrofit in European Building Portfolios: A Review of Five Key Aspects," Sustainability, MDPI, vol. 12(18), pages 1-38, September.
    3. Theodoridou, Ifigeneia & Karteris, Marinos & Mallinis, Georgios & Papadopoulos, Agis M. & Hegger, Manfred, 2012. "Assessment of retrofitting measures and solar systems' potential in urban areas using Geographical Information Systems: Application to a Mediterranean city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6239-6261.
    4. Silva, Felipe L.C. & Souza, Reinaldo C. & Cyrino Oliveira, Fernando L. & Lourenco, Plutarcho M. & Calili, Rodrigo F., 2018. "A bottom-up methodology for long term electricity consumption forecasting of an industrial sector - Application to pulp and paper sector in Brazil," Energy, Elsevier, vol. 144(C), pages 1107-1118.
    5. Verena Weiler & Ursula Eicker, 2021. "Automatic energy demand and system simulation at district level," Sustainability Nexus Forum, Springer, vol. 29(2), pages 133-141, June.
    6. Lazzaretto, Andrea, 2009. "A critical comparison between thermoeconomic and emergy analyses algebra," Energy, Elsevier, vol. 34(12), pages 2196-2205.
    7. Yuancheng Lin & Chinhao Chong & Linwei Ma & Zheng Li & Weidou Ni, 2021. "Analysis of Changes in the Aggregate Exergy Efficiency of China’s Energy System from 2005 to 2015," Energies, MDPI, vol. 14(8), pages 1-27, April.
    8. Raúl Arango-Miranda & Robert Hausler & Rabindranarth Romero-Lopez & Mathias Glaus & Sara P. Ibarra-Zavaleta, 2018. "Carbon Dioxide Emissions, Energy Consumption and Economic Growth: A Comparative Empirical Study of Selected Developed and Developing Countries. “The Role of Exergy”," Energies, MDPI, vol. 11(10), pages 1-16, October.
    9. da Silva, Felipe L.C. & Cyrino Oliveira, Fernando L. & Souza, Reinaldo C., 2019. "A bottom-up bayesian extension for long term electricity consumption forecasting," Energy, Elsevier, vol. 167(C), pages 198-210.
    10. Anna Kipping & Erik Trømborg, 2017. "Modeling Aggregate Hourly Energy Consumption in a Regional Building Stock," Energies, MDPI, vol. 11(1), pages 1-20, December.
    11. Raúl Arango-Miranda & Robert Hausler & Rabindranarth Romero-López & Mathias Glaus & Sara Patricia Ibarra-Zavaleta, 2018. "An Overview of Energy and Exergy Analysis to the Industrial Sector, a Contribution to Sustainability," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    12. Solène Goy & François Maréchal & Donal Finn, 2020. "Data for Urban Scale Building Energy Modelling: Assessing Impacts and Overcoming Availability Challenges," Energies, MDPI, vol. 13(16), pages 1-23, August.
    13. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    14. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    15. Szajkó, Gabriella & Rácz, Viktor József & Kis, András, 2024. "The role of price incentives in enhancing carbon sequestration in the forestry sector of Hungary," Forest Policy and Economics, Elsevier, vol. 158(C).
    16. Zare, V. & Mahmoudi, S.M.S. & Yari, M. & Amidpour, M., 2012. "Thermoeconomic analysis and optimization of an ammonia–water power/cooling cogeneration cycle," Energy, Elsevier, vol. 47(1), pages 271-283.
    17. Rafael de Arce & Ramón Mahía, 2019. "Drivers of Electricity Poverty in Spanish Dwellings: A Quantile Regression Approach," Energies, MDPI, vol. 12(11), pages 1-18, May.
    18. Silva, J.A.M. & Flórez-Orrego, D. & Oliveira, S., 2014. "An exergy based approach to determine production cost and CO2 allocation for petroleum derived fuels," Energy, Elsevier, vol. 67(C), pages 490-495.
    19. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.
    20. Yildiz, B. & Bilbao, J.I. & Dore, J. & Sproul, A.B., 2017. "Recent advances in the analysis of residential electricity consumption and applications of smart meter data," Applied Energy, Elsevier, vol. 208(C), pages 402-427.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:843-:d:320811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.