IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v140y2020ics0301421520301567.html
   My bibliography  Save this article

An assessment of energy efficient motors application by scenarios evaluation

Author

Listed:
  • Bortoni, Edson C.
  • Magalhães, Leonardo P.
  • Nogueira, Luiz A.H.
  • Bajay, Sérgio V.
  • Cassula, Agnelo M.

Abstract

The choice of the most appropriate public policies to foster energy efficiency measures often is a difficult task due to the large number of intervening variables and agents and, also, high levels of uncertainties in estimating the corresponding energy savings. This paper presents a methodology that builds up scenarios to assess the impacts on energy consumption of introducing different levels of penetration of efficient electric induction motors, according to the set of policies and measures adopted in the scenarios. The proposed methodology comprises three modules. The first one selects strategic objectives, key variables and control players, determines their direct and cross-influence levels, based on the opinions of consulted experts, and sets up some scenarios combining them. The second module carries out electric motor sales forecasts based on electricity consumption forecasts for the industry. The third module estimates the energy saving forecasts associated to each scenario. The approach is applied to Brazil in the paper, indicating valuable policy options and their likelihood to local decision makers and other stakeholders.

Suggested Citation

  • Bortoni, Edson C. & Magalhães, Leonardo P. & Nogueira, Luiz A.H. & Bajay, Sérgio V. & Cassula, Agnelo M., 2020. "An assessment of energy efficient motors application by scenarios evaluation," Energy Policy, Elsevier, vol. 140(C).
  • Handle: RePEc:eee:enepol:v:140:y:2020:i:c:s0301421520301567
    DOI: 10.1016/j.enpol.2020.111402
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421520301567
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2020.111402?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Garcia, Agenor Gomes Pinto & Szklo, Alexandre S. & Schaeffer, Roberto & McNeil, Michael A., 2007. "Energy-efficiency standards for electric motors in Brazilian industry," Energy Policy, Elsevier, vol. 35(6), pages 3424-3439, June.
    2. Beenstock, Michael & Goldin, Ephraim & Nabot, Dan, 1999. "The demand for electricity in Israel," Energy Economics, Elsevier, vol. 21(2), pages 168-183, April.
    3. Zuberi, M. Jibran S. & Tijdink, Anton & Patel, Martin K., 2017. "Techno-economic analysis of energy efficiency improvement in electric motor driven systems in Swiss industry," Applied Energy, Elsevier, vol. 205(C), pages 85-104.
    4. Hasanuzzaman, M. & Rahim, N.A. & Saidur, R. & Kazi, S.N., 2011. "Energy savings and emissions reductions for rewinding and replacement of industrial motor," Energy, Elsevier, vol. 36(1), pages 233-240.
    5. Weimer-Jehle, Wolfgang & Buchgeister, Jens & Hauser, Wolfgang & Kosow, Hannah & Naegler, Tobias & Poganietz, Witold-Roger & Pregger, Thomas & Prehofer, Sigrid & von Recklinghausen, Andreas & Schippl, , 2016. "Context scenarios and their usage for the construction of socio-technical energy scenarios," Energy, Elsevier, vol. 111(C), pages 956-970.
    6. Brown, Marilyn A. & Levine, Mark D. & Short, Walter & Koomey, Jonathan G., 2001. "Scenarios for a clean energy future," Energy Policy, Elsevier, vol. 29(14), pages 1179-1196, November.
    7. Wang, Ziyi & Wennersten, Ronald & Sun, Qie, 2017. "Outline of principles for building scenarios – Transition toward more sustainable energy systems," Applied Energy, Elsevier, vol. 185(P2), pages 1890-1898.
    8. Paul Waide & Conrad U. Brunner, 2011. "Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems," IEA Energy Papers 2011/7, OECD Publishing.
    9. Cagno, E. & Worrell, E. & Trianni, A. & Pugliese, G., 2013. "A novel approach for barriers to industrial energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 290-308.
    10. Sauer, Ildo L. & Tatizawa, Hédio & Salotti, Francisco A.M. & Mercedes, Sonia S., 2015. "A comparative assessment of Brazilian electric motors performance with minimum efficiency standards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 308-318.
    11. Akbaba, Mehmet, 1999. "Energy conservation by using energy efficient electric motors," Applied Energy, Elsevier, vol. 64(1-4), pages 149-158, September.
    12. Cardoso, Rafael Balbino & Nogueira, Luiz Augusto Horta & Haddad, Jamil, 2010. "Economic feasibility for acquisition of efficient refrigerators in Brazil," Applied Energy, Elsevier, vol. 87(1), pages 28-37, January.
    13. Axelsson, E. & Harvey, S. & Berntsson, T., 2009. "A tool for creating energy market scenarios for evaluation of investments in energy intensive industry," Energy, Elsevier, vol. 34(12), pages 2069-2074.
    14. de Almeida, Anibal T. & Fong, Joao & Falkner, Hugh & Bertoldi, Paolo, 2017. "Policy options to promote energy efficient electric motors and drives in the EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1275-1286.
    15. Tang, John C. S. & Chirarattananon, Surapong & Petchsantad, Kitti, 1995. "Motor program for the DSM plan for Thailand," Applied Energy, Elsevier, vol. 52(1), pages 65-71.
    16. Siderius, Hans-Paul, 2013. "The role of experience curves for setting MEPS for appliances," Energy Policy, Elsevier, vol. 59(C), pages 762-772.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burgos Payán, Manuel & Roldan Fernandez, Juan Manuel & Maza Ortega, Jose Maria & Riquelme Santos, Jesus Manuel, 2019. "Techno-economic optimal power rating of induction motors," Applied Energy, Elsevier, vol. 240(C), pages 1031-1048.
    2. Julio R. Gómez & Enrique C. Quispe & Rosaura del Pilar Castrillón & Percy R. Viego, 2020. "Identification of Technoeconomic Opportunities with the Use of Premium Efficiency Motors as Alternative for Developing Countries," Energies, MDPI, vol. 13(20), pages 1-16, October.
    3. Gómez, Julio R. & Sousa, Vladimir & Cabello Eras, Juan J. & Sagastume Gutiérrez, Alexis & Viego, Percy R. & Quispe, Enrique C. & de León, Gabriel, 2022. "Assessment criteria of the feasibility of replacement standard efficiency electric motors with high-efficiency motors," Energy, Elsevier, vol. 239(PA).
    4. Trianni, Andrea & Cagno, Enrico & Accordini, Davide, 2019. "Energy efficiency measures in electric motors systems: A novel classification highlighting specific implications in their adoption," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    5. Prince, & Hati, Ananda Shankar, 2021. "A comprehensive review of energy-efficiency of ventilation system using Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    6. Sauer, Ildo L. & Tatizawa, Hédio & Salotti, Francisco A.M. & Mercedes, Sonia S., 2015. "A comparative assessment of Brazilian electric motors performance with minimum efficiency standards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 308-318.
    7. Thirugnanasambandam, M. & Hasanuzzaman, M. & Saidur, R. & Ali, M.B. & Rajakarunakaran, S. & Devaraj, D. & Rahim, N.A., 2011. "Analysis of electrical motors load factors and energy savings in an Indian cement industry," Energy, Elsevier, vol. 36(7), pages 4307-4314.
    8. Saidur, R. & Rahim, N.A. & Hasanuzzaman, M., 2010. "A review on compressed-air energy use and energy savings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1135-1153, May.
    9. Saidur, R., 2010. "A review on electrical motors energy use and energy savings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 877-898, April.
    10. Singh, Gurmeet & Anil Kumar, T.Ch. & Naikan, V.N.A., 2019. "Efficiency monitoring as a strategy for cost effective maintenance of induction motors for minimizing carbon emission and energy consumption," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 193-201.
    11. Memon, Abdul Jabbar & Shaikh, Muhammad Mujtaba, 2016. "Confidence bounds for energy conservation in electric motors: An economical solution using statistical techniques," Energy, Elsevier, vol. 109(C), pages 592-601.
    12. Sousa Santos, Vladimir & Cabello Eras, Juan J. & Cabello Ulloa, Mario J., 2024. "Evaluation of the energy saving potential in electric motors applying a load-based voltage control method," Energy, Elsevier, vol. 303(C).
    13. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2014. "Energy and hydraulic efficiency in conventional water supply systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 701-714.
    14. de Almeida, Anibal T. & Fong, Joao & Falkner, Hugh & Bertoldi, Paolo, 2017. "Policy options to promote energy efficient electric motors and drives in the EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1275-1286.
    15. Fábio de Oliveira Neves & Henrique Ewbank & José Arnaldo Frutuoso Roveda & Andrea Trianni & Fernando Pinhabel Marafão & Sandra Regina Monteiro Masalskiene Roveda, 2022. "Economic and Production-Related Implications for Industrial Energy Efficiency: A Logistic Regression Analysis on Cross-Cutting Technologies," Energies, MDPI, vol. 15(4), pages 1-19, February.
    16. Paramonova, Svetlana & Nehler, Therese & Thollander, Patrik, 2021. "Technological change or process innovation – An empirical study of implemented energy efficiency measures from a Swedish industrial voluntary agreements program," Energy Policy, Elsevier, vol. 156(C).
    17. Hosain, Md Lokman & Bel Fdhila, Rebei & Rönnberg, Kristian, 2017. "Taylor-Couette flow and transient heat transfer inside the annulus air-gap of rotating electrical machines," Applied Energy, Elsevier, vol. 207(C), pages 624-633.
    18. Saidur, R. & Rahim, N.A. & Ping, H.W. & Jahirul, M.I. & Mekhilef, S. & Masjuki, H.H., 2009. "Energy and emission analysis for industrial motors in Malaysia," Energy Policy, Elsevier, vol. 37(9), pages 3650-3658, September.
    19. Guo, Jingquan & Ma, Xinqiang & Ahmadpour, Ali, 2021. "Electrical–mechanical evaluation of the multi–cascaded induction motors under different conditions," Energy, Elsevier, vol. 229(C).
    20. Danilo Ferreira de Souza & Francisco Antônio Marino Salotti & Ildo Luís Sauer & Hédio Tatizawa & Aníbal Traça de Almeida & Arnaldo Gakiya Kanashiro, 2022. "A Performance Evaluation of Three-Phase Induction Electric Motors between 1945 and 2020," Energies, MDPI, vol. 15(6), pages 1-31, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:140:y:2020:i:c:s0301421520301567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.