IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v135y2021ics1364032120304883.html
   My bibliography  Save this article

Towards nearly zero-energy residential neighbourhoods in the European Union: A case study

Author

Listed:
  • Nematchoua, Modeste Kameni
  • Marie-Reine Nishimwe, Antoinette
  • Reiter, Sigrid

Abstract

The European Union (EU) aims to establish a guideline that requires all new buildings to comply with nearly zero-energy buildings (NZEB) by 2030. This decision involves new technologies based on concepts that meet international standards. This research aims to review the literature on ‘net zero-energy building’ and analyses the possibility of applying this research on nine statistically representative neighbourhoods of the building stock'in Belgium, depending on the built density. All the areas, grouped into four categories (urban, peri-urban, suburban, and rural neighbourhoods), were used for current energy consumption analysis and to evaluate prospective scenarios based on four major challenges, namely climate change, building renovations, photovoltaic panels, and sustainable mobility. In addition, a new approach combining several scenarios to further improve energy needs at the neighbourhood scale is also highlighted. The nine different types of neighbourhoods studied are commonly found in different countries across the EU. The average reduction in energy consumption of neighbourhoods (buildings + daily mobility) in 2040 (compared to reference year 2012) will likely reach 5.69% attributable to a 20% reduction in distances travelled, 6.48% to climate change, 12.95% to the current annual buildings renovation rate, 18.76%–100% electric cars, 22.26% for doubling the current buildings renovation rate, 31.62% and 63.25% to a light or heavy renovation of the entire building stock, respectively. Moreover, installing 20 m2 of solar panels on the rooftops of each residential building would produce renewable energy equivalent to 6.53% of the current global energy consumption. Finally, the results show that more than 90% of current energy consumption can be reduced at the neighbourhood scale (buildings + daily mobility) by combining a heavy renovation of all the buildings, electric vehicles, and photovoltaic panels. This scenario allows reaching the ‘nearly zero-energy’ target at the neighbourhood scale.

Suggested Citation

  • Nematchoua, Modeste Kameni & Marie-Reine Nishimwe, Antoinette & Reiter, Sigrid, 2021. "Towards nearly zero-energy residential neighbourhoods in the European Union: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  • Handle: RePEc:eee:rensus:v:135:y:2021:i:c:s1364032120304883
    DOI: 10.1016/j.rser.2020.110198
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120304883
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110198?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gago, E.J. & Muneer, T. & Knez, M. & Köster, H., 2015. "Natural light controls and guides in buildings. Energy saving for electrical lighting, reduction of cooling load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1-13.
    2. Zeiler, Wim & Boxem, Gert, 2013. "Net-zero energy building schools," Renewable Energy, Elsevier, vol. 49(C), pages 282-286.
    3. Zhou, Zhihua & Feng, Lei & Zhang, Shuzhen & Wang, Chendong & Chen, Guanyi & Du, Tao & Li, Yasong & Zuo, Jian, 2016. "The operational performance of “net zero energy building”: A study in China," Applied Energy, Elsevier, vol. 177(C), pages 716-728.
    4. Beccali, Marco & Cellura, Maurizio & Fontana, Mario & Longo, Sonia & Mistretta, Marina, 2013. "Energy retrofit of a single-family house: Life cycle net energy saving and environmental benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 283-293.
    5. Boussauw, Kobe & Witlox, Frank, 2009. "Introducing a commute-energy performance index for Flanders," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(5), pages 580-591, June.
    6. Kennedy, Scott & Sgouridis, Sgouris, 2011. "Rigorous classification and carbon accounting principles for low and Zero Carbon Cities," Energy Policy, Elsevier, vol. 39(9), pages 5259-5268, September.
    7. Yamagata, Yoshiki & Seya, Hajime, 2013. "Simulating a future smart city: An integrated land use-energy model," Applied Energy, Elsevier, vol. 112(C), pages 1466-1474.
    8. Neves, Ana Rita & Leal, Vítor, 2010. "Energy sustainability indicators for local energy planning: Review of current practices and derivation of a new framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2723-2735, December.
    9. Lopes, Rui Amaral & Martins, João & Aelenei, Daniel & Lima, Celson Pantoja, 2016. "A cooperative net zero energy community to improve load matching," Renewable Energy, Elsevier, vol. 93(C), pages 1-13.
    10. Nematchoua, ModesteKameni & Deuse, Caroline & Cools, Mario & Reiter, Sigrid, 2020. "Evaluation of the potential of classic and electric bicycle commuting as an impetus for the transition towards environmentally sustainable cities: A case study of the university campuses in Liege, Bel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    11. Marique, Anne-Francoise & Dujardin, Sébastien & Teller, Jacques & Reiter, Sigrid, 2013. "School commuting: the relationship between energy consumption and urban form," Journal of Transport Geography, Elsevier, vol. 26(C), pages 1-11.
    12. Nematchoua, Modeste Kameni & Orosa, José A. & Reiter, Sigrid, 2019. "Energy consumption assessment due to the mobility of inhabitants and multiannual prospective on the horizon 2030–2050 in one Belgium city," Energy, Elsevier, vol. 171(C), pages 523-534.
    13. Annunziata, Eleonora & Frey, Marco & Rizzi, Francesco, 2013. "Towards nearly zero-energy buildings: The state-of-art of national regulations in Europe," Energy, Elsevier, vol. 57(C), pages 125-133.
    14. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2012. "Impact of climate change on energy use in the built environment in different climate zones – A review," Energy, Elsevier, vol. 42(1), pages 103-112.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Jiacheng & Wu, Di & Wang, Yuanyuan & Wang, Liming & Guo, Hanyuan, 2023. "Co-optimization method research and comprehensive benefits analysis of regional integrated energy system," Applied Energy, Elsevier, vol. 340(C).
    2. Rocha, Helder R.O. & Fiorotti, Rodrigo & Louzada, Danilo M. & Silvestre, Leonardo J. & Celeste, Wanderley C. & Silva, Jair A.L., 2024. "Net Zero Energy cost Building system design based on Artificial Intelligence," Applied Energy, Elsevier, vol. 355(C).
    3. Mainali, Brijesh & Mahapatra, Krushna & Pardalis, Georgios, 2021. "Strategies for deep renovation market of detached houses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    4. Roberta Moschetti & Shabnam Homaei & Ellika Taveres-Cachat & Steinar Grynning, 2022. "Assessing Responsive Building Envelope Designs through Robustness-Based Multi-Criteria Decision Making in Zero-Emission Buildings," Energies, MDPI, vol. 15(4), pages 1-27, February.
    5. Bjelland, David & Brozovsky, Johannes & Hrynyszyn, Bozena Dorota, 2024. "Systematic review: Upscaling energy retrofitting to the multi-building level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    6. Borge-Diez, David & Icaza, Daniel & Trujillo-Cueva, Diego Francisco & Açıkkalp, Emin, 2022. "Renewable energy driven heat pumps decarbonization potential in existing residential buildings: Roadmap and case study of Spain," Energy, Elsevier, vol. 247(C).
    7. Gabriele Battista & Emanuele de Lieto Vollaro & Andrea Vallati & Roberto de Lieto Vollaro, 2023. "Technical–Financial Feasibility Study of a Micro-Cogeneration System in the Buildings in Italy," Energies, MDPI, vol. 16(14), pages 1-15, July.
    8. Modeste Kameni Nematchoua, 2022. "Strategies for Studying Acidification and Eutrophication Potentials, a Case Study of 150 Countries," J, MDPI, vol. 5(1), pages 1-16, March.
    9. Marc Richter & Pio Lombardi & Bartlomiej Arendarski & André Naumann & Andreas Hoepfner & Przemyslaw Komarnicki & Antonio Pantaleo, 2021. "A Vision for Energy Decarbonization: Planning Sustainable Tertiary Sites as Net-Zero Energy Systems," Energies, MDPI, vol. 14(17), pages 1-16, September.
    10. Badr Eddine Lebrouhi & Eric Schall & Bilal Lamrani & Yassine Chaibi & Tarik Kousksou, 2022. "Energy Transition in France," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    11. Zhou, Yuekuan, 2022. "Energy sharing and trading on a novel spatiotemporal energy network in Guangdong-Hong Kong-Macao Greater Bay Area," Applied Energy, Elsevier, vol. 318(C).
    12. Modeste Kameni Nematchoua & José A. Orosa & Paola Ricciardi & Esther Obonyo & Eric Jean Roy Sambatra & Sigrid Reiter, 2021. "Transition to Zero Energy and Low Carbon Emission in Residential Buildings Located in Tropical and Temperate Climates," Energies, MDPI, vol. 14(14), pages 1-21, July.
    13. Jung, Seunghoon & Jeoung, Jaewon & Kang, Hyuna & Hong, Taehoon, 2021. "Optimal planning of a rooftop PV system using GIS-based reinforcement learning," Applied Energy, Elsevier, vol. 298(C).
    14. Piselli, Cristina & Salvadori, Giacomo & Diciotti, Lorenzo & Fantozzi, Fabio & Pisello, Anna Laura, 2021. "Assessing users’ willingness-to-engagement towards Net Zero Energy communities in Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    15. Sassenou, L.-N. & Olivieri, L. & Olivieri, F., 2024. "Challenges for positive energy districts deployment: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    16. Modeste Kameni Nematchoua & José A. Orosa, 2023. "Low Carbon Emissions and Energy Consumption: A Targeted Approach Based on the Life Cycle Assessment of a District," Waste, MDPI, vol. 1(3), pages 1-24, July.
    17. Badr Eddine Lebrouhi & Éric Schall & Bilal Lamrani & Yassine Chaibi & Tarik Kousksou, 2022. "Energy Transition in France," Post-Print hal-03716839, HAL.
    18. Yamaguchi, Yohei & Shoda, Yuto & Yoshizawa, Shinya & Imai, Tatsuya & Perwez, Usama & Shimoda, Yoshiyuki & Hayashi, Yasuhiro, 2023. "Feasibility assessment of net zero-energy transformation of building stock using integrated synthetic population, building stock, and power distribution network framework," Applied Energy, Elsevier, vol. 333(C).
    19. Kılkış, Şiir & Ulpiani, Giulia & Vetters, Nadja, 2024. "Visions for climate neutrality and opportunities for co-learning in European cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Modarres, Ali, 2013. "Commuting and energy consumption: toward an equitable transportation policy," Journal of Transport Geography, Elsevier, vol. 33(C), pages 240-249.
    2. Piccardo, C. & Dodoo, A. & Gustavsson, L. & Tettey, U.Y.A., 2020. "Retrofitting with different building materials: Life-cycle primary energy implications," Energy, Elsevier, vol. 192(C).
    3. Villa-Arrieta, Manuel & Sumper, Andreas, 2019. "Economic evaluation of Nearly Zero Energy Cities," Applied Energy, Elsevier, vol. 237(C), pages 404-416.
    4. Shaterabadi, Mohammad & Jirdehi, Mehdi Ahmadi & Amiri, Nima & Omidi, Sina, 2020. "Enhancement the economical and environmental aspects of plus-zero energy buildings integrated with INVELOX turbines," Renewable Energy, Elsevier, vol. 153(C), pages 1355-1367.
    5. Chung, Mo & Park, Hwa-Choon, 2015. "Comparison of building energy demand for hotels, hospitals, and offices in Korea," Energy, Elsevier, vol. 92(P3), pages 383-393.
    6. Yu, Sha & Eom, Jiyong & Zhou, Yuyu & Evans, Meredydd & Clarke, Leon, 2014. "Scenarios of building energy demand for China with a detailed regional representation," Energy, Elsevier, vol. 67(C), pages 284-297.
    7. Linlin Zhao & Zhansheng Liu & Jasper Mbachu, 2019. "Energy Management through Cost Forecasting for Residential Buildings in New Zealand," Energies, MDPI, vol. 12(15), pages 1-24, July.
    8. Javier M. Rey-Hernández & Eloy Velasco-Gómez & Julio F. San José-Alonso & Ana Tejero-González & Francisco J. Rey-Martínez, 2018. "Energy Analysis at a Near Zero Energy Building. A Case-Study in Spain," Energies, MDPI, vol. 11(4), pages 1-19, April.
    9. Jing Zhao & Yahui Du, 2019. "A Study on Energy-Saving Technologies Optimization towards Nearly Zero Energy Educational Buildings in Four Major Climatic Regions of China," Energies, MDPI, vol. 12(24), pages 1-31, December.
    10. Aste, Niccolò & Manfren, Massimiliano & Marenzi, Giorgia, 2017. "Building Automation and Control Systems and performance optimization: A framework for analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 313-330.
    11. Nejat, Payam & Jomehzadeh, Fatemeh & Taheri, Mohammad Mahdi & Gohari, Mohammad & Abd. Majid, Muhd Zaimi, 2015. "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 843-862.
    12. D'Agostino, Delia & Parker, Danny, 2018. "A framework for the cost-optimal design of nearly zero energy buildings (NZEBs) in representative climates across Europe," Energy, Elsevier, vol. 149(C), pages 814-829.
    13. Christoforidis, Georgios C. & Chatzisavvas, Konstantinos Ch. & Lazarou, Stavros & Parisses, Costantinos, 2013. "Covenant of Mayors initiative—Public perception issues and barriers in Greece," Energy Policy, Elsevier, vol. 60(C), pages 643-655.
    14. Charani Shandiz, Saeid & Rismanchi, Behzad & Foliente, Greg, 2021. "Energy master planning for net-zero emission communities: State of the art and research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    15. Guariso, Giorgio & Sangiorgio, Matteo, 2019. "Multi-objective planning of building stock renovation," Energy Policy, Elsevier, vol. 130(C), pages 101-110.
    16. Wang, Yanqiu & Ji, Jie & Sun, Wei & Yuan, Weiqi & Cai, Jingyong & Guo, Chao & He, Wei, 2016. "Experiment and simulation study on the optimization of the PV direct-coupled solar water heating system," Energy, Elsevier, vol. 100(C), pages 154-166.
    17. Michel Noussan & Matteo Jarre, 2021. "Assessing Commuting Energy and Emissions Savings through Remote Working and Carpooling: Lessons from an Italian Region," Energies, MDPI, vol. 14(21), pages 1-19, November.
    18. Bell, N.O. & Bilbao, J.I. & Kay, M. & Sproul, A.B., 2022. "Future climate scenarios and their impact on heating, ventilation and air-conditioning system design and performance for commercial buildings for 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    19. Caliskan, Hakan, 2015. "Thermodynamic and environmental analyses of biomass, solar and electrical energy options based building heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1016-1034.
    20. Behroozeh, Samira & Hayati, Dariush & Karami, Ezatollah, 2022. "Determining and validating criteria to measure energy consumption sustainability in agricultural greenhouses," Technological Forecasting and Social Change, Elsevier, vol. 185(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:135:y:2021:i:c:s1364032120304883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.