IDEAS home Printed from https://ideas.repec.org/a/gam/jwaste/v1y2023i3p35-611d1185089.html
   My bibliography  Save this article

Low Carbon Emissions and Energy Consumption: A Targeted Approach Based on the Life Cycle Assessment of a District

Author

Listed:
  • Modeste Kameni Nematchoua

    (School of Informatics, Computing, and Cyber Systems|Northern Arizona University, 1295 S. Knoles Dr., Building 90, Room 320, Flagstaff, AZ 86011, USA
    Department of Physic, Faculty of Sciences, University of Yaounde 1, Yaounde 812, Cameroon)

  • José A. Orosa

    (Department of Marine Engineering, University of A Coruña, Paseo de Ronda 51, 15011 A Coruña, Spain)

Abstract

Nowadays, the methodology aiming to achieve carbon neutrality and net zero energy on a large scale is known. Despite this, few specialists are mastering this technology globally. What new scenarios. applied at the neighbourhood scale. generate a significant reduction in the rate of CO 2 emissions and energy demand? In addition, a lack of massive, regular, and consistent data on carbon emissions and energy consumption has made it significantly difficult to understand the origins of climate change at the building and neighbourhood scales. This work has, as its main goal, the assessment of different strategies that facilitate reduction in the concentration of CO 2 and lower energy demands at the district level. The life cycle assessment of a new district has been carried out over 100 years during the four stages of the life cycle of the neighbourhood (construction, operation, demolition and end of life). The results showed that up to 93% of greenhouse gas (GHG) was produced during the operational stage. The energy demand due to transport and waste management represented 60% of the total energy demand of the district during the operational stage. There is still a possibility to maintain air temperature growth around 1.5 °C in the next decade by means of the following: Global warming + 100% of heavy renovation of all buildings + 100% of electric car − renewable energy. This strategy would facilitate a reduction of over 92% of the CO 2 produced at the district level.

Suggested Citation

  • Modeste Kameni Nematchoua & José A. Orosa, 2023. "Low Carbon Emissions and Energy Consumption: A Targeted Approach Based on the Life Cycle Assessment of a District," Waste, MDPI, vol. 1(3), pages 1-24, July.
  • Handle: RePEc:gam:jwaste:v:1:y:2023:i:3:p:35-611:d:1185089
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2813-0391/1/3/35/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2813-0391/1/3/35/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nematchoua, Modeste Kameni & Marie-Reine Nishimwe, Antoinette & Reiter, Sigrid, 2021. "Towards nearly zero-energy residential neighbourhoods in the European Union: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Nichols, Brice G. & Kockelman, Kara M., 2014. "Life-cycle energy implications of different residential settings: Recognizing buildings, travel, and public infrastructure," Energy Policy, Elsevier, vol. 68(C), pages 232-242.
    3. Röck, Martin & Saade, Marcella Ruschi Mendes & Balouktsi, Maria & Rasmussen, Freja Nygaard & Birgisdottir, Harpa & Frischknecht, Rolf & Habert, Guillaume & Lützkendorf, Thomas & Passer, Alexander, 2020. "Embodied GHG emissions of buildings – The hidden challenge for effective climate change mitigation," Applied Energy, Elsevier, vol. 258(C).
    4. Rafique, M. Mujahid & Rehman, S. & Alhems, Luai M., 2018. "Developing zero energy and sustainable villages – A case study for communities of the future," Renewable Energy, Elsevier, vol. 127(C), pages 565-574.
    5. Kim, Min-Hwi & Kim, Deukwon & Heo, Jaehyeok & Lee, Dong-Won, 2019. "Techno-economic analysis of hybrid renewable energy system with solar district heating for net zero energy community," Energy, Elsevier, vol. 187(C).
    6. Sesil Koutra & Claire Pagnoule & Nikolaos-Fivos Galatoulas & Ali Bagheri & Thomas Waroux & Vincent Becue & Christos S. Ioakimidis, 2019. "The Zero-Energy Idea in Districts: Application of a Methodological Approach to a Case Study of Epinlieu (Mons)," Sustainability, MDPI, vol. 11(17), pages 1-27, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marc Richter & Pio Lombardi & Bartlomiej Arendarski & André Naumann & Andreas Hoepfner & Przemyslaw Komarnicki & Antonio Pantaleo, 2021. "A Vision for Energy Decarbonization: Planning Sustainable Tertiary Sites as Net-Zero Energy Systems," Energies, MDPI, vol. 14(17), pages 1-16, September.
    2. Sassenou, L.-N. & Olivieri, L. & Olivieri, F., 2024. "Challenges for positive energy districts deployment: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    3. Min-Hwi Kim & Dong-Won Lee & Deuk-Won Kim & Young-Sub An & Jae-Ho Yun, 2021. "Energy Performance Investigation of Bi-Directional Convergence Energy Prosumers for an Energy Sharing Community," Energies, MDPI, vol. 14(17), pages 1-17, September.
    4. Muhammad Bilal Ali & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Mohammed A. Alghassab, 2023. "Decarbonizing Telecommunication Sector: Techno-Economic Assessment and Optimization of PV Integration in Base Transceiver Stations in Telecom Sector Spreading across Various Geographically Regions," Energies, MDPI, vol. 16(9), pages 1-34, April.
    5. Xiaoxia Li & Husheng Qiu & Zhifeng Wang & Jinping Li & Guobin Yuan & Xiao Guo & Lifeng Jin, 2023. "Numerical Investigation of a Solar-Heating System with Solar-Tower Receiver and Seasonal Storage in Northern China: Dynamic Performance Assessment and Operation Strategy Analysis," Energies, MDPI, vol. 16(14), pages 1-27, July.
    6. Kılkış, Şiir & Ulpiani, Giulia & Vetters, Nadja, 2024. "Visions for climate neutrality and opportunities for co-learning in European cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    7. Ryu, Jun & Bahadur, Jitendra & Hayase, Shuzi & Jeong, Sang Mun & Kang, Dong-Won, 2023. "Efficient and stable energy conversion using 2D/3D mixed Sn-perovskite photovoltaics with antisolvent engineering," Energy, Elsevier, vol. 278(PB).
    8. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.
    9. Jacek Michalak & Bartosz Michałowski, 2022. "Understanding Sustainability of Construction Products: Answers from Investors, Contractors, and Sellers of Building Materials," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
    10. Maria Cristina Collivignarelli & Giacomo Cillari & Paola Ricciardi & Marco Carnevale Miino & Vincenzo Torretta & Elena Cristina Rada & Alessandro Abbà, 2020. "The Production of Sustainable Concrete with the Use of Alternative Aggregates: A Review," Sustainability, MDPI, vol. 12(19), pages 1-34, September.
    11. Marin Pellan & Denise Almeida & Mathilde Louërat & Guillaume Habert, 2024. "Integrating Consumption-Based Metrics into Sectoral Carbon Budgets to Enhance Sustainability Monitoring of Building Activities," Sustainability, MDPI, vol. 16(16), pages 1-25, August.
    12. Pérez-Sánchez, Laura À. & Velasco-Fernández, Raúl & Giampietro, Mario, 2022. "Factors and actions for the sustainability of the residential sector. The nexus of energy, materials, space, and time use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    13. Yamaguchi, Yohei & Shoda, Yuto & Yoshizawa, Shinya & Imai, Tatsuya & Perwez, Usama & Shimoda, Yoshiyuki & Hayashi, Yasuhiro, 2023. "Feasibility assessment of net zero-energy transformation of building stock using integrated synthetic population, building stock, and power distribution network framework," Applied Energy, Elsevier, vol. 333(C).
    14. Fahlstedt, Oskar & Temeljotov-Salaj, Alenka & Lohne, Jardar & Bohne, Rolf André, 2022. "Holistic assessment of carbon abatement strategies in building refurbishment literature — A scoping review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    15. Roberta Moschetti & Shabnam Homaei & Ellika Taveres-Cachat & Steinar Grynning, 2022. "Assessing Responsive Building Envelope Designs through Robustness-Based Multi-Criteria Decision Making in Zero-Emission Buildings," Energies, MDPI, vol. 15(4), pages 1-27, February.
    16. Haonan Zhang, 2023. "Leveraging policy instruments and financial incentives to reduce embodied carbon in energy retrofits," Papers 2304.03403, arXiv.org.
    17. Lachlan Curmi & Kumudu Kaushalya Weththasinghe & Muhammad Atiq Ur Rehman Tariq, 2022. "Global Policy Review on Embodied Flows: Recommendations for Australian Construction Sector," Sustainability, MDPI, vol. 14(21), pages 1-19, November.
    18. Bjelland, David & Brozovsky, Johannes & Hrynyszyn, Bozena Dorota, 2024. "Systematic review: Upscaling energy retrofitting to the multi-building level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    19. Jann Michael Weinand, 2020. "Reviewing Municipal Energy System Planning in a Bibliometric Analysis: Evolution of the Research Field between 1991 and 2019," Energies, MDPI, vol. 13(6), pages 1-18, March.
    20. Maximilian Weigert & Oleksandr Melnyk & Leopold Winkler & Jacqueline Raab, 2022. "Carbon Emissions of Construction Processes on Urban Construction Sites," Sustainability, MDPI, vol. 14(19), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jwaste:v:1:y:2023:i:3:p:35-611:d:1185089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.