IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v41y2015icp1-13.html
   My bibliography  Save this article

Natural light controls and guides in buildings. Energy saving for electrical lighting, reduction of cooling load

Author

Listed:
  • Gago, E.J.
  • Muneer, T.
  • Knez, M.
  • Köster, H.

Abstract

The residential sector is responsible for approximately a quarter of energy consumption in Europe. This consumption, together with that of other buildings, mainly from the tertiary sector, makes up 40% of total energy consumption and 36% of CO2 emissions. Artificial lighting makes up 14% of electrical consumption in the European Union and 19% worldwide. Through the use of well-designed natural lighting, controlled by technologies or systems which guarantee accessibility from all areas inside buildings, energy consumption for lighting and air conditioning can be kept to a minimum. The authors of this article carried out a state of the art on the technologies or control systems of natural light in buildings, concentrating on those control methods which not only protect the occupants from direct solar glare but also maximize natural light penetration in buildings based on the occupants׳ preferences, whilst allowing for a reduction in electrical consumption for lighting and cooling. All of the control and/or natural light guidance systems and/or strategies guarantee the penetration of daylight into the building, thus reducing the electrical energy consumption for lighting and cooling. At the same time they improve the thermal and visual comfort of the users of the buildings. However various studies have also brought to light certain disadvantages to these systems.

Suggested Citation

  • Gago, E.J. & Muneer, T. & Knez, M. & Köster, H., 2015. "Natural light controls and guides in buildings. Energy saving for electrical lighting, reduction of cooling load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1-13.
  • Handle: RePEc:eee:rensus:v:41:y:2015:i:c:p:1-13
    DOI: 10.1016/j.rser.2014.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114006777
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chirarattananon, Surapong & Chaiwiwatworakul, Pipat & Pattanasethanon, Singthong, 2002. "Daylight availability and models for global and diffuse horizontal illuminance and irradiance for Bangkok," Renewable Energy, Elsevier, vol. 26(1), pages 69-89.
    2. Alrubaih, M.S. & Zain, M.F.M. & Alghoul, M.A. & Ibrahim, N.L.N. & Shameri, M.A. & Elayeb, Omkalthum, 2013. "Research and development on aspects of daylighting fundamentals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 494-505.
    3. Al-Sallal, Khaled A., 2007. "Testing glare in universal space design studios in Al-Ain, UAE desert climate and proposed improvements," Renewable Energy, Elsevier, vol. 32(6), pages 1033-1044.
    4. Aries, Myriam B.C. & Newsham, Guy R., 2008. "Effect of daylight saving time on lighting energy use: A literature review," Energy Policy, Elsevier, vol. 36(6), pages 1858-1866, June.
    5. Palmero-Marrero, Ana I. & Oliveira, Armando C., 2010. "Effect of louver shading devices on building energy requirements," Applied Energy, Elsevier, vol. 87(6), pages 2040-2049, June.
    6. Hourani, May M. & Hammad, Rizeq N., 2012. "Impact of daylight quality on architectural space dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3579-3585.
    7. Tsangrassoulis, Aris & Bourdakis, Vassilis, 2003. "Comparison of radiosity and ray-tracing techniques with a practical design procedure for the prediction of daylight levels in atria," Renewable Energy, Elsevier, vol. 28(13), pages 2157-2162.
    8. Wong, Irene & Yang, H.X., 2012. "Introducing natural lighting into the enclosed lift lobbies of highrise buildings by remote source lighting system," Applied Energy, Elsevier, vol. 90(1), pages 225-232.
    9. Greenup, P & Bell, J.M & Moore, I, 2001. "The importance of interior daylight distribution in buildings on overall energy performance," Renewable Energy, Elsevier, vol. 22(1), pages 45-52.
    10. Jenkins, David & Muneer, Tariq, 2004. "Light-pipe prediction methods," Applied Energy, Elsevier, vol. 79(1), pages 77-86, September.
    11. Garcia-Hansen, V & Esteves, A & Pattini, A, 2002. "Passive solar systems for heating, daylighting and ventilation for rooms without an equator-facing facade," Renewable Energy, Elsevier, vol. 26(1), pages 91-111.
    12. Chel, Arvind & Tiwari, G.N. & Chandra, Avinash, 2009. "A model for estimation of daylight factor for skylight: An experimental validation using pyramid shape skylight over vault roof mud-house in New Delhi (India)," Applied Energy, Elsevier, vol. 86(11), pages 2507-2519, November.
    13. Soler, Alfonso & Oteiza, Pilar, 1996. "Dependence on solar elevation of the performance of a light shelf as a potential daylighting device," Renewable Energy, Elsevier, vol. 8(1), pages 198-201.
    14. Blok, Kornelis, 2005. "Enhanced policies for the improvement of electricity efficiencies," Energy Policy, Elsevier, vol. 33(13), pages 1635-1641, September.
    15. Kristl, Živa & Košir, Mitja & Trobec Lah, Mateja & Krainer, Aleš, 2008. "Fuzzy control system for thermal and visual comfort in building," Renewable Energy, Elsevier, vol. 33(4), pages 694-702.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Galatioto, A. & Beccali, M., 2016. "Aspects and issues of daylighting assessment: A review study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 852-860.
    2. Chel, Arvind & Tiwari, G.N. & Singh, H.N., 2010. "A modified model for estimation of daylight factor for skylight integrated with dome roof structure of mud-house in New Delhi (India)," Applied Energy, Elsevier, vol. 87(10), pages 3037-3050, October.
    3. Das, Aparna & Paul, Saikat Kumar, 2015. "Artificial illumination during daytime in residential buildings: Factors, energy implications and future predictions," Applied Energy, Elsevier, vol. 158(C), pages 65-85.
    4. Wong, Ing Liang, 2017. "A review of daylighting design and implementation in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 959-968.
    5. Antonis Kontadakis & Aris Tsangrassoulis & Lambros Doulos & Stelios Zerefos, 2017. "A Review of Light Shelf Designs for Daylit Environments," Sustainability, MDPI, vol. 10(1), pages 1-24, December.
    6. Mehdi Amirkhani & Veronica Garcia-Hansen & Gillian Isoardi & Alicia Allan, 2017. "An Energy Efficient Lighting Design Strategy to Enhance Visual Comfort in Offices with Windows," Energies, MDPI, vol. 10(8), pages 1-16, August.
    7. Chel, Arvind & Tiwari, G.N. & Chandra, Avinash, 2009. "A model for estimation of daylight factor for skylight: An experimental validation using pyramid shape skylight over vault roof mud-house in New Delhi (India)," Applied Energy, Elsevier, vol. 86(11), pages 2507-2519, November.
    8. Stevanović, Sanja, 2013. "Optimization of passive solar design strategies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 177-196.
    9. Vassiliades, Constantinos & Michael, Aimilios & Savvides, Andreas & Kalogirou, Soteris, 2018. "Improvement of passive behaviour of existing buildings through the integration of active solar energy systems," Energy, Elsevier, vol. 163(C), pages 1178-1192.
    10. Salata, Ferdinando & Golasi, Iacopo & di Salvatore, Maicol & de Lieto Vollaro, Andrea, 2016. "Energy and reliability optimization of a system that combines daylighting and artificial sources. A case study carried out in academic buildings," Applied Energy, Elsevier, vol. 169(C), pages 250-266.
    11. Jiraphorn Mahawan & Atthakorn Thongtha, 2021. "Experimental Investigation of Illumination Performance of Hollow Light Pipe for Energy Consumption Reduction in Buildings," Energies, MDPI, vol. 14(2), pages 1-17, January.
    12. Nasrollahi, Nazanin & Shokri, Elham, 2016. "Daylight illuminance in urban environments for visual comfort and energy performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 861-874.
    13. Li, Danny H.W., 2010. "A review of daylight illuminance determinations and energy implications," Applied Energy, Elsevier, vol. 87(7), pages 2109-2118, July.
    14. Michael, A. & Gregoriou, S. & Kalogirou, S.A., 2018. "Environmental assessment of an integrated adaptive system for the improvement of indoor visual comfort of existing buildings," Renewable Energy, Elsevier, vol. 115(C), pages 620-633.
    15. Taesub Lim & Woong Seog Yim & Daeung Danny Kim, 2020. "Evaluation of Daylight and Cooling Performance of Shading Devices in Residential Buildings in South Korea," Energies, MDPI, vol. 13(18), pages 1-14, September.
    16. Wang, Xiaoxiao & Liu, Xiangfeng, 2015. "Blue Star: The proposed energy efficient tall building in Chicago and vertical city strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 241-259.
    17. Dong Eun Jung & Chanuk Lee & Kwang Ho Lee & Minjae Shin & Sung Lok Do, 2021. "Evaluation of Building Energy Performance with Optimal Control of Movable Shading Device Integrated with PV System," Energies, MDPI, vol. 14(7), pages 1-21, March.
    18. Han, Shulun & Sun, Yuying & Wang, Wei & Xu, Wenjing & Wei, Wenzhe, 2023. "Optimal design method for electrochromic window split-pane configuration to enhance building energy efficiency," Renewable Energy, Elsevier, vol. 219(P1).
    19. Yeo Beom Yoon & Woo Ram Jeong & Kwang Ho Lee, 2014. "Window Material Daylighting Performance Assessment Algorithm: Comparing Radiosity and Split-Flux Methods," Energies, MDPI, vol. 7(4), pages 1-15, April.
    20. Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:41:y:2015:i:c:p:1-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.