IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i24p4734-d297085.html
   My bibliography  Save this article

A Study on Energy-Saving Technologies Optimization towards Nearly Zero Energy Educational Buildings in Four Major Climatic Regions of China

Author

Listed:
  • Jing Zhao

    (Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China)

  • Yahui Du

    (Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China)

Abstract

An educational building is a kind of public building with a high density of occupants and high energy consumption. Energy-saving technology utilization is an effective measure to achieve high-performance buildings. However, numerous studies are greatly limited to practical application due to their strong regional pertinence and technical simplicity. This paper aims to further optimize various commonly used technologies on the basis of the current national standards, and to individually establish four recommended technology selection systems corresponding to four major climatic regions for realizing nearly zero energy educational buildings (nZEEBs) in China. An educational building was selected as the case study. An evaluation index of energy-saving contribution rate (ECR) was proposed for measuring the energy efficiency of each technology. Thereafter, high energy efficiency technologies were selected and implemented together in the four basic cases representing different climatic regions. The results showed that the total energy-saving rate in severe cold regions increased by 70.74% compared with current national standards, and about 60% of the total energy-saving rate can be improved in cold regions. However, to realize nZEEBs in hot summer and cold winter regions as well as in hot summer and warm winter regions, photovoltaic (PV) technology needs to be further supplemented.

Suggested Citation

  • Jing Zhao & Yahui Du, 2019. "A Study on Energy-Saving Technologies Optimization towards Nearly Zero Energy Educational Buildings in Four Major Climatic Regions of China," Energies, MDPI, vol. 12(24), pages 1-31, December.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4734-:d:297085
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/24/4734/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/24/4734/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Liu & Lam, Joseph C. & Tsang, C.L., 2008. "Energy performance of building envelopes in different climate zones in China," Applied Energy, Elsevier, vol. 85(9), pages 800-817, September.
    2. Gago, E.J. & Muneer, T. & Knez, M. & Köster, H., 2015. "Natural light controls and guides in buildings. Energy saving for electrical lighting, reduction of cooling load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1-13.
    3. A.M. Fogheri, 2015. "Energy Efficiency in Public Buildings," Rivista economica del Mezzogiorno, Società editrice il Mulino, issue 3-4, pages 763-784.
    4. Rahman, M.M. & Rasul, M.G. & Khan, M.M.K., 2010. "Energy conservation measures in an institutional building in sub-tropical climate in Australia," Applied Energy, Elsevier, vol. 87(10), pages 2994-3004, October.
    5. Javier M. Rey-Hernández & Eloy Velasco-Gómez & Julio F. San José-Alonso & Ana Tejero-González & Francisco J. Rey-Martínez, 2018. "Energy Analysis at a Near Zero Energy Building. A Case-Study in Spain," Energies, MDPI, vol. 11(4), pages 1-19, April.
    6. Zhou, Zhihua & Feng, Lei & Zhang, Shuzhen & Wang, Chendong & Chen, Guanyi & Du, Tao & Li, Yasong & Zuo, Jian, 2016. "The operational performance of “net zero energy building”: A study in China," Applied Energy, Elsevier, vol. 177(C), pages 716-728.
    7. Javier M. Rey-Hernández & Eloy Velasco-Gómez & Julio F. San José-Alonso & Ana Tejero-González & Sergio L. González-González & Francisco J. Rey-Martínez, 2018. "Monitoring Data Study of the Performance of Renewable Energy Systems in a Near Zero Energy Building in Spain: A Case Study," Energies, MDPI, vol. 11(11), pages 1-17, November.
    8. Ascione, Fabrizio & D'Agostino, Diana & Marino, Concetta & Minichiello, Francesco, 2016. "Earth-to-air heat exchanger for NZEB in Mediterranean climate," Renewable Energy, Elsevier, vol. 99(C), pages 553-563.
    9. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    10. Palmero-Marrero, Ana I. & Oliveira, Armando C., 2010. "Effect of louver shading devices on building energy requirements," Applied Energy, Elsevier, vol. 87(6), pages 2040-2049, June.
    11. Zhaoxia Wang & Jing Zhao, 2018. "Optimization of Passive Envelop Energy Efficient Measures for Office Buildings in Different Climate Regions of China Based on Modified Sensitivity Analysis," Sustainability, MDPI, vol. 10(4), pages 1-28, March.
    12. Liu, Zhijian & Liu, Yuanwei & He, Bao-Jie & Xu, Wei & Jin, Guangya & Zhang, Xutao, 2019. "Application and suitability analysis of the key technologies in nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 329-345.
    13. Kamal, Rajeev & Moloney, Francesca & Wickramaratne, Chatura & Narasimhan, Arunkumar & Goswami, D.Y., 2019. "Strategic control and cost optimization of thermal energy storage in buildings using EnergyPlus," Applied Energy, Elsevier, vol. 246(C), pages 77-90.
    14. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    15. Eleftheria Touloupaki & Theodoros Theodosiou, 2017. "Optimization of External Envelope Insulation Thickness: A Parametric Study," Energies, MDPI, vol. 10(3), pages 1-19, February.
    16. Sun, Yanyi & Wilson, Robin & Wu, Yupeng, 2018. "A Review of Transparent Insulation Material (TIM) for building energy saving and daylight comfort," Applied Energy, Elsevier, vol. 226(C), pages 713-729.
    17. Kirimtat, Ayca & Koyunbaba, Basak Kundakci & Chatzikonstantinou, Ioannis & Sariyildiz, Sevil, 2016. "Review of simulation modeling for shading devices in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 23-49.
    18. Yang, Xinyan & Zhang, Shicong & Xu, Wei, 2019. "Impact of zero energy buildings on medium-to-long term building energy consumption in China," Energy Policy, Elsevier, vol. 129(C), pages 574-586.
    19. Deng, S. & Wang, R.Z. & Dai, Y.J., 2014. "How to evaluate performance of net zero energy building – A literature research," Energy, Elsevier, vol. 71(C), pages 1-16.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuai Zhang & Dexuan Song & Zhuoyu Yu & Yifan Song & Shubo Du & Li Yang, 2023. "Simulation and Optimization of Insulation Wall Corner Construction for Ultra-Low Energy Buildings," Energies, MDPI, vol. 16(3), pages 1-26, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Saadi, Saleh Nasser & Shaaban, Awni K., 2019. "Zero energy building (ZEB) in a cooling dominated climate of Oman: Design and energy performance analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 299-316.
    2. Salata, Ferdinando & Ciancio, Virgilio & Dell'Olmo, Jacopo & Golasi, Iacopo & Palusci, Olga & Coppi, Massimo, 2020. "Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms," Applied Energy, Elsevier, vol. 260(C).
    3. Liu, Zhijian & Liu, Yuanwei & He, Bao-Jie & Xu, Wei & Jin, Guangya & Zhang, Xutao, 2019. "Application and suitability analysis of the key technologies in nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 329-345.
    4. Javier M. Rey-Hernández & Eloy Velasco-Gómez & Julio F. San José-Alonso & Ana Tejero-González & Sergio L. González-González & Francisco J. Rey-Martínez, 2018. "Monitoring Data Study of the Performance of Renewable Energy Systems in a Near Zero Energy Building in Spain: A Case Study," Energies, MDPI, vol. 11(11), pages 1-17, November.
    5. Kočí, Jan & Kočí, Václav & Maděra, Jiří & Černý, Robert, 2019. "Effect of applied weather data sets in simulation of building energy demands: Comparison of design years with recent weather data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 22-32.
    6. AlAjmi, Ali & Abou-Ziyan, Hosny & Ghoneim, Adel, 2016. "Achieving annual and monthly net-zero energy of existing building in hot climate," Applied Energy, Elsevier, vol. 165(C), pages 511-521.
    7. Zhang, Shicong & Wang, Ke & Xu, Wei & Iyer-Raniga, Usha & Athienitis, Andreas & Ge, Hua & Cho, Dong woo & Feng, Wei & Okumiya, Masaya & Yoon, Gyuyoung & Mazria, Edward & Lyu, Yanjie, 2021. "Policy recommendations for the zero energy building promotion towards carbon neutral in Asia-Pacific Region," Energy Policy, Elsevier, vol. 159(C).
    8. Kristiansen, A.B. & Ma, T. & Wang, R.Z., 2019. "Perspectives on industrialized transportable solar powered zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 112-124.
    9. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    10. Liu, Jiang & Liu, Yan & Yang, Liu & Liu, Tang & Zhang, Chen & Dong, Hong, 2020. "Climatic and seasonal suitability of phase change materials coupled with night ventilation for office buildings in Western China," Renewable Energy, Elsevier, vol. 147(P1), pages 356-373.
    11. Xueying Jia & Hui Zhang & Xin Yao & Lei Yang & Zikang Ke & Junle Yan & Xiaoxi Huang & Shiyu Jin, 2023. "Research on Technology System Adaptability of Nearly Zero-Energy Office Buildings in the Hot Summer and Cold Winter Zone of China," Sustainability, MDPI, vol. 15(17), pages 1-21, August.
    12. Zhang, Sheng & Sun, Yongjun & Cheng, Yong & Huang, Pei & Oladokun, Majeed Olaide & Lin, Zhang, 2018. "Response-surface-model-based system sizing for Nearly/Net zero energy buildings under uncertainty," Applied Energy, Elsevier, vol. 228(C), pages 1020-1031.
    13. Wang, Y. & Mauree, D. & Sun, Q. & Lin, H. & Scartezzini, J.L. & Wennersten, R., 2020. "A review of approaches to low-carbon transition of high-rise residential buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    14. Sara Brito-Coimbra & Daniel Aelenei & Maria Gloria Gomes & Antonio Moret Rodrigues, 2021. "Building Façade Retrofit with Solar Passive Technologies: A Literature Review," Energies, MDPI, vol. 14(6), pages 1-18, March.
    15. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    16. Fan, Cheng & Huang, Gongsheng & Sun, Yongjun, 2018. "A collaborative control optimization of grid-connected net zero energy buildings for performance improvements at building group level," Energy, Elsevier, vol. 164(C), pages 536-549.
    17. Krzysztof Wąs & Jan Radoń & Agnieszka Sadłowska-Sałęga, 2020. "Maintenance of Passive House Standard in the Light of Long-Term Study on Energy Use in a Prefabricated Lightweight Passive House in Central Europe," Energies, MDPI, vol. 13(11), pages 1-22, June.
    18. Jia, Shuning & Sheng, Kai & Huang, Dehai & Hu, Kai & Xu, Yizhe & Yan, Chengchu, 2023. "Design optimization of energy systems for zero energy buildings based on grid-friendly interaction with smart grid," Energy, Elsevier, vol. 284(C).
    19. Liu, Zhijian & Zhou, Qingxu & Tian, Zhiyong & He, Bao-jie & Jin, Guangya, 2019. "A comprehensive analysis on definitions, development, and policies of nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    20. Kaiser Ahmed & Margaux Carlier & Christian Feldmann & Jarek Kurnitski, 2018. "A New Method for Contrasting Energy Performance and Near-Zero Energy Building Requirements in Different Climates and Countries," Energies, MDPI, vol. 11(6), pages 1-22, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4734-:d:297085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.