IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v192y2020ics0360544219323436.html
   My bibliography  Save this article

Retrofitting with different building materials: Life-cycle primary energy implications

Author

Listed:
  • Piccardo, C.
  • Dodoo, A.
  • Gustavsson, L.
  • Tettey, U.Y.A.

Abstract

The energy retrofitting of existing buildings reduces the energy use in the operation phase but the use of additional materials influence the energy use in other life cycle phases of retrofitted buildings. In this study, we analyse the life cycle primary energy implications of different material alternatives when retrofitting an existing building to meet high energy performance levels. We design retrofitting options assuming the highest and lowest value of final energy use, respectively, for passive house standards applicable in Sweden. The retrofitting options include the thermal improvement of the building envelope. We calculate the primary energy use in the operation phase (operation primary energy), as well as in production, maintenance and end-of-life phases (non-operation primary energy). Our results show that the non-operation primary energy use can vary significantly depending on the choice of materials for thermal insulation, cladding systems and windows. Although the operation energy use decreases by 63–78%, we find that the non-operation energy for building retrofitting accounts for up to 21% of the operation energy saving, depending on the passive house performance level and the material alternative. A careful selection of building materials can reduce the non-operation primary energy by up to 40%, especially when using wood-based materials.

Suggested Citation

  • Piccardo, C. & Dodoo, A. & Gustavsson, L. & Tettey, U.Y.A., 2020. "Retrofitting with different building materials: Life-cycle primary energy implications," Energy, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:energy:v:192:y:2020:i:c:s0360544219323436
    DOI: 10.1016/j.energy.2019.116648
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219323436
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116648?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beccali, Marco & Cellura, Maurizio & Fontana, Mario & Longo, Sonia & Mistretta, Marina, 2013. "Energy retrofit of a single-family house: Life cycle net energy saving and environmental benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 283-293.
    2. Nair, Gireesh & Gustavsson, Leif & Mahapatra, Krushna, 2010. "Factors influencing energy efficiency investments in existing Swedish residential buildings," Energy Policy, Elsevier, vol. 38(6), pages 2956-2963, June.
    3. Truong, Nguyen Le & Gustavsson, Leif, 2014. "Cost and primary energy efficiency of small-scale district heating systems," Applied Energy, Elsevier, vol. 130(C), pages 419-427.
    4. Radhi, H., 2010. "On the optimal selection of wall cladding system to reduce direct and indirect CO2 emissions," Energy, Elsevier, vol. 35(3), pages 1412-1424.
    5. Leif Gustavsson & Kim Pingoud & Roger Sathre, 2006. "Carbon Dioxide Balance of Wood Substitution: Comparing Concrete- and Wood-Framed Buildings," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(3), pages 667-691, May.
    6. Truong, Nguyen Le & Dodoo, Ambrose & Gustavsson, Leif, 2018. "Effects of energy efficiency measures in district-heated buildings on energy supply," Energy, Elsevier, vol. 142(C), pages 1114-1127.
    7. Schnieders, Jurgen & Hermelink, Andreas, 2006. "CEPHEUS results: measurements and occupants' satisfaction provide evidence for Passive Houses being an option for sustainable building," Energy Policy, Elsevier, vol. 34(2), pages 151-171, January.
    8. Schiavoni, S. & D׳Alessandro, F. & Bianchi, F. & Asdrubali, F., 2016. "Insulation materials for the building sector: A review and comparative analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 988-1011.
    9. Annunziata, Eleonora & Frey, Marco & Rizzi, Francesco, 2013. "Towards nearly zero-energy buildings: The state-of-art of national regulations in Europe," Energy, Elsevier, vol. 57(C), pages 125-133.
    10. Cellura, Maurizio & Guarino, Francesco & Longo, Sonia & Mistretta, Marina & Orioli, Aldo, 2013. "The role of the building sector for reducing energy consumption and greenhouse gases: An Italian case study," Renewable Energy, Elsevier, vol. 60(C), pages 586-597.
    11. Kiss, Bernadett & Neij, Lena, 2011. "The importance of learning when supporting emergent technologies for energy efficiency - A case study on policy intervention for learning for the development of energy efficient windows in Sweden," Energy Policy, Elsevier, vol. 39(10), pages 6514-6524, October.
    12. Dodoo, Ambrose & Gustavsson, Leif & Tettey, Uniben Y.A., 2017. "Final energy savings and cost-effectiveness of deep energy renovation of a multi-storey residential building," Energy, Elsevier, vol. 135(C), pages 563-576.
    13. Nair, Gireesh & Gustavsson, Leif & Mahapatra, Krushna, 2010. "Owners perception on the adoption of building envelope energy efficiency measures in Swedish detached houses," Applied Energy, Elsevier, vol. 87(7), pages 2411-2419, July.
    14. Dodoo, Ambrose & Gustavsson, Leif, 2013. "Life cycle primary energy use and carbon footprint of wood-frame conventional and passive houses with biomass-based energy supply," Applied Energy, Elsevier, vol. 112(C), pages 834-842.
    15. Tettey, Uniben Yao Ayikoe & Dodoo, Ambrose & Gustavsson, Leif, 2016. "Primary energy implications of different design strategies for an apartment building," Energy, Elsevier, vol. 104(C), pages 132-148.
    16. Dodoo, Ambrose & Tettey, Uniben Yao Ayikoe & Gustavsson, Leif, 2017. "Influence of simulation assumptions and input parameters on energy balance calculations of residential buildings," Energy, Elsevier, vol. 120(C), pages 718-730.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sam Hamels, 2021. "CO 2 Intensities and Primary Energy Factors in the Future European Electricity System," Energies, MDPI, vol. 14(8), pages 1-30, April.
    2. Anna Szymczak-Graczyk & Gabriela Gajewska & Ireneusz Laks & Wojciech Kostrzewski, 2022. "Influence of Variable Moisture Conditions on the Value of the Thermal Conductivity of Selected Insulation Materials Used in Passive Buildings," Energies, MDPI, vol. 15(7), pages 1-17, April.
    3. Darija Gajić & Slobodan Peulić & Tim Mavrič & Anna Sandak & Črtomir Tavzes & Milica Malešević & Mladen Slijepčević, 2021. "Energy Retrofitting Opportunities Using Renewable Materials—Comparative Analysis of the Current Frameworks in Bosnia-Herzegovina and Slovenia," Sustainability, MDPI, vol. 13(2), pages 1-19, January.
    4. Anna Życzyńska & Zbigniew Suchorab & Dariusz Majerek, 2020. "Influence of Thermal Retrofitting on Annual Energy Demand for Heating in Multi-Family Buildings," Energies, MDPI, vol. 13(18), pages 1-19, September.
    5. Anna Sobotka & Kazimierz Linczowski & Aleksandra Radziejowska, 2021. "Substitution of Building Components in Historic Buildings," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    6. Hamels, Sam & Himpe, Eline & Laverge, Jelle & Delghust, Marc & Van den Brande, Kjartan & Janssens, Arnold & Albrecht, Johan, 2021. "The use of primary energy factors and CO2 intensities for electricity in the European context - A systematic methodological review and critical evaluation of the contemporary literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    7. Anna Życzyńska & Zbigniew Suchorab & Jan Kočí & Robert Černý, 2020. "Energy Effects of Retrofitting the Educational Facilities Located in South-Eastern Poland," Energies, MDPI, vol. 13(10), pages 1-16, May.
    8. Alabid, Jamal & Bennadji, Amar & Seddiki, Mohammed, 2022. "A review on the energy retrofit policies and improvements of the UK existing buildings, challenges and benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    9. Luo, Xiaojun & Oyedele, Lukumon O., 2022. "Integrated life-cycle optimisation and supply-side management for building retrofitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    10. Elena G. Dascalaki & Poulia A. Argiropoulou & Constantinos A. Balaras & Kalliopi G. Droutsa & Simon Kontoyiannidis, 2020. "Benchmarks for Embodied and Operational Energy Assessment of Hellenic Single-Family Houses," Energies, MDPI, vol. 13(17), pages 1-36, August.
    11. Piccardo, Chiara & Gustavsson, Leif, 2023. "Deep energy retrofits using different retrofit materials under different scenarios: Life cycle cost and primary energy implications," Energy, Elsevier, vol. 281(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Truong & Gustavsson, Leif & Dodoo, Ambrose & Tettey, Uniben Yao Ayikoe, 2020. "Implications of supplying district heat to a new urban residential area in Sweden," Energy, Elsevier, vol. 194(C).
    2. Tettey, Uniben Yao Ayikoe & Dodoo, Ambrose & Gustavsson, Leif, 2017. "Energy use implications of different design strategies for multi-storey residential buildings under future climates," Energy, Elsevier, vol. 138(C), pages 846-860.
    3. Mahapatra, K., 2015. "Energy use and CO2 emission of new residential buildings built under specific requirements – The case of Växjö municipality, Sweden," Applied Energy, Elsevier, vol. 152(C), pages 31-38.
    4. Shoaib Azizi & Gireesh Nair & Thomas Olofsson, 2020. "Adoption of Energy Efficiency Measures in Renovation of Single-Family Houses: A Comparative Approach," Energies, MDPI, vol. 13(22), pages 1-16, November.
    5. Ayikoe Tettey, Uniben Yao & Gustavsson, Leif, 2020. "Energy savings and overheating risk of deep energy renovation of a multi-storey residential building in a cold climate under climate change," Energy, Elsevier, vol. 202(C).
    6. Kylili, Angeliki & Ilic, Milos & Fokaides, Paris A., 2017. "Whole-building Life Cycle Assessment (LCA) of a passive house of the sub-tropical climatic zone," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 169-177.
    7. García-Maroto, I. & García-Maraver, A. & Muñoz-Leiva, F. & Zamorano, M., 2015. "Consumer knowledge, information sources used and predisposition towards the adoption of wood pellets in domestic heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 207-215.
    8. Kaya, O. & Klepacka, A.M. & Florkowski, W.J., 2021. "The role of personal and environmental factors in rural homeowner decision to insulate; an example from Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    9. Michelsen, Claus & Rosenschon, Sebastian & Schulz, Christian, 2015. "Small might be beautiful, but bigger performs better: Scale economies in “green” refurbishments of apartment housing," Energy Economics, Elsevier, vol. 50(C), pages 240-250.
    10. Akhatova, A. & Derkenbaeva, E. & van Leeuwen, E. & Kranzl, L. & Halleck Vega, S. & Hofstede, G.J., 2024. "Who invests in energy retrofits? Mining Dutch homeowners’ data," Energy Policy, Elsevier, vol. 189(C).
    11. Ramos, A. & Gago, A. & Labandeira, X. & Linares, P., 2015. "The role of information for energy efficiency in the residential sector," Energy Economics, Elsevier, vol. 52(S1), pages 17-29.
    12. Sierra-Pérez, Jorge & Rodríguez-Soria, Beatriz & Boschmonart-Rives, Jesús & Gabarrell, Xavier, 2018. "Integrated life cycle assessment and thermodynamic simulation of a public building’s envelope renovation: Conventional vs. Passivhaus proposal," Applied Energy, Elsevier, vol. 212(C), pages 1510-1521.
    13. Xu, Xin & You, Shijun & Zheng, Xuejing & Li, Han, 2014. "A survey of district heating systems in the heating regions of northern China," Energy, Elsevier, vol. 77(C), pages 909-925.
    14. Wilson, C. & Pettifor, H. & Chryssochoidis, G., 2018. "Quantitative modelling of why and how homeowners decide to renovate energy efficiently," Applied Energy, Elsevier, vol. 212(C), pages 1333-1344.
    15. Klöckner, Christian A. & Nayum, Alim, 2017. "Psychological and structural facilitators and barriers to energy upgrades of the privately owned building stock," Energy, Elsevier, vol. 140(P1), pages 1005-1017.
    16. Spyridon Karytsas & Eleni Theodoropoulou, 2023. "Awareness and Utilization of Incentive Programs for Household Energy-Saving Renovations: Empirical Findings from Greece," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
    17. Nematchoua, Modeste Kameni & Marie-Reine Nishimwe, Antoinette & Reiter, Sigrid, 2021. "Towards nearly zero-energy residential neighbourhoods in the European Union: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Cellura, Maurizio & Guarino, Francesco & Longo, Sonia & Mistretta, Marina, 2015. "Different energy balances for the redesign of nearly net zero energy buildings: An Italian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 100-112.
    19. Piccardo, Chiara & Gustavsson, Leif, 2023. "Deep energy retrofits using different retrofit materials under different scenarios: Life cycle cost and primary energy implications," Energy, Elsevier, vol. 281(C).
    20. Mignon, Ingrid & Winberg, Lisa, 2023. "The role of public energy advising in sustainability transitions – empirical evidence from Sweden," Energy Policy, Elsevier, vol. 177(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:192:y:2020:i:c:s0360544219323436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.