IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v119y2020ics136403211930752x.html
   My bibliography  Save this article

Evaluation of the potential of classic and electric bicycle commuting as an impetus for the transition towards environmentally sustainable cities: A case study of the university campuses in Liege, Belgium

Author

Listed:
  • Nematchoua, ModesteKameni
  • Deuse, Caroline
  • Cools, Mario
  • Reiter, Sigrid

Abstract

To address the negative effects of car use, conventional and electric bicycles are often proposed as environment-friendly alternatives. The aim of this research is to identify the prospects of a modal shift towards conventional and electric bicycles based on a case study analysing the mobility generated by the three main campuses of the University of Liège in Belgium. In the theoretical part of this paper, the known factors and strategies that affect most of the bicycle use in Europe are summarised and the need for a deeper understanding of the elements that promote a modal shift from bus and car users to the use of electric bicycles is highlighted. Consequently, the results of a survey conducted among the university population of the University of Liège(students, PhD students, and staff members; including 1496 questionnaire responses)are presented and analysed in detail. The Net Promoter Score (NPS), as an indicator of the user satisfaction, confirms that the bicycle has the best NPS compared with the main modes of transport (car and bus) and that the electric bicyclehas a greater NPS than the conventional bicycle. The importance of many factors affecting the use of cycling is lower if we consider the electric bicycleinstead of the conventional bicycle. Considering the current travel patterns in terms of the distances travelled, the potential for the use of conventional bicycles only reaches 23% of the university users, whereas that of electric bicycles reaches 70%. In the pursuit of a modal report, the most imminent factor is the development of safe bike paths, where a potential increase in the bicycle use is acknowledged by 74% of the students, 62% of the staff members, 62% of the car users, and 82% of the bus users. Finally, because the lack of safe cycle lanes remains the major obstacle with respect to the use of both bicycle types, the development and/or improvement of a comfortable and secure infrastructure for cyclists within a radius of 12 km from the main school and work places, especially in the main residential and commercial areas, should be prioritised to promote the use of both types of bicycles.

Suggested Citation

  • Nematchoua, ModesteKameni & Deuse, Caroline & Cools, Mario & Reiter, Sigrid, 2020. "Evaluation of the potential of classic and electric bicycle commuting as an impetus for the transition towards environmentally sustainable cities: A case study of the university campuses in Liege, Bel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
  • Handle: RePEc:eee:rensus:v:119:y:2020:i:c:s136403211930752x
    DOI: 10.1016/j.rser.2019.109544
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211930752X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109544?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rachel Aldred & Bridget Elliott & James Woodcock & Anna Goodman, 2017. "Cycling provision separated from motor traffic: a systematic review exploring whether stated preferences vary by gender and age," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 29-55, January.
    2. Cherry, Christopher & Cervero, Robert, 2007. "Use characteristics and mode choice behavior of electric bike users in China," Transport Policy, Elsevier, vol. 14(3), pages 247-257, May.
    3. Wolf, Angelika & Seebauer, Sebastian, 2014. "Technology adoption of electric bicycles: A survey among early adopters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 196-211.
    4. Jones, Tim & Harms, Lucas & Heinen, Eva, 2016. "Motives, perceptions and experiences of electric bicycle owners and implications for health, wellbeing and mobility," Journal of Transport Geography, Elsevier, vol. 53(C), pages 41-49.
    5. Rietveld, Piet & Daniel, Vanessa, 2004. "Determinants of bicycle use: do municipal policies matter?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(7), pages 531-550, August.
    6. Ribeiro, Suzana K & Kobayashi, Shigeki & Beuthe, Michel & Gasca, Jorge & Greene, David & Lee, David S. & Muromachi, Yasunori & Newton, Peter J. & Plotkin, Steven & Sperling, Daniel & Wit, Ron & Zhou, , 2007. "Transportation and its Infrastructure," Institute of Transportation Studies, Working Paper Series qt98m5t1rv, Institute of Transportation Studies, UC Davis.
    7. Cherry, Christopher, 2007. "Electric Bike Use in China and Their Impacts on the Environment, Safety, Mobility and Accessibility," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8bn7v9jm, Institute of Transportation Studies, UC Berkeley.
    8. Rotaris, Lucia & Danielis, Romeo, 2015. "Commuting to college: The effectiveness and social efficiency of transportation demand management policies," Transport Policy, Elsevier, vol. 44(C), pages 158-168.
    9. Broach, Joseph & Dill, Jennifer & Gliebe, John, 2012. "Where do cyclists ride? A route choice model developed with revealed preference GPS data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1730-1740.
    10. Wardman, Mark & Tight, Miles & Page, Matthew, 2007. "Factors influencing the propensity to cycle to work," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(4), pages 339-350, May.
    11. Cairns, S. & Behrendt, F. & Raffo, D. & Beaumont, C. & Kiefer, C., 2017. "Electrically-assisted bikes: Potential impacts on travel behaviour," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 327-342.
    12. Cass, Noel & Faulconbridge, James, 2016. "Commuting practices: New insights into modal shift from theories of social practice," Transport Policy, Elsevier, vol. 45(C), pages 1-14.
    13. Marique, Anne-Francoise & Dujardin, Sébastien & Teller, Jacques & Reiter, Sigrid, 2013. "School commuting: the relationship between energy consumption and urban form," Journal of Transport Geography, Elsevier, vol. 26(C), pages 1-11.
    14. Cherry, Christopher R. & Weinert, Jonathan X. & Yang, Xinmiao, 2009. "Comparative Environmental Impacts of Electric Bikes in China," Institute of Transportation Studies, Working Paper Series qt16k918sh, Institute of Transportation Studies, UC Davis.
    15. Cherry, Christopher R. & Yang, Hongtai & Jones, Luke R. & He, Min, 2016. "Dynamics of electric bike ownership and use in Kunming, China," Transport Policy, Elsevier, vol. 45(C), pages 127-135.
    16. Santos, Georgina & Maoh, Hanna & Potoglou, Dimitris & von Brunn, Thomas, 2013. "Factors influencing modal split of commuting journeys in medium-size European cities," Journal of Transport Geography, Elsevier, vol. 30(C), pages 127-137.
    17. Sigrid Reiter & Anne‐Françoise Marique, 2012. "Toward Low Energy Cities," Journal of Industrial Ecology, Yale University, vol. 16(6), pages 829-838, December.
    18. Vandenbulcke, Grégory & Dujardin, Claire & Thomas, Isabelle & Geus, Bas de & Degraeuwe, Bart & Meeusen, Romain & Panis, Luc Int, 2011. "Cycle commuting in Belgium: Spatial determinants and 're-cycling' strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(2), pages 118-137, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bretones, Alexandra & Marquet, Oriol, 2022. "Sociopsychological factors associated with the adoption and usage of electric micromobility. A literature review," Transport Policy, Elsevier, vol. 127(C), pages 230-249.
    2. Nematchoua, Modeste Kameni & Marie-Reine Nishimwe, Antoinette & Reiter, Sigrid, 2021. "Towards nearly zero-energy residential neighbourhoods in the European Union: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Philips, Ian & Anable, Jillian & Chatterton, Tim, 2022. "E-bikes and their capability to reduce car CO2 emissions," Transport Policy, Elsevier, vol. 116(C), pages 11-23.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacek Oskarbski & Krystian Birr & Karol Żarski, 2021. "Bicycle Traffic Model for Sustainable Urban Mobility Planning," Energies, MDPI, vol. 14(18), pages 1-36, September.
    2. Tomasz Bieliński & Łukasz Dopierała & Maciej Tarkowski & Agnieszka Ważna, 2020. "Lessons from Implementing a Metropolitan Electric Bike Sharing System," Energies, MDPI, vol. 13(23), pages 1-21, November.
    3. Ziwen Ling & Christopher R. Cherry & John H. MacArthur & Jonathan X. Weinert, 2017. "Differences of Cycling Experiences and Perceptions between E-Bike and Bicycle Users in the United States," Sustainability, MDPI, vol. 9(9), pages 1-18, September.
    4. Lanzendorf, Martin & Busch-Geertsema, Annika, 2014. "The cycling boom in large German cities—Empirical evidence for successful cycling campaigns," Transport Policy, Elsevier, vol. 36(C), pages 26-33.
    5. Georgia Apostolou & Angèle Reinders & Karst Geurs, 2018. "An Overview of Existing Experiences with Solar-Powered E-Bikes," Energies, MDPI, vol. 11(8), pages 1-20, August.
    6. Kaplan, Sigal & Wrzesinska, Dagmara K. & Prato, Carlo G., 2018. "The role of human needs in the intention to use conventional and electric bicycle sharing in a driving-oriented country," Transport Policy, Elsevier, vol. 71(C), pages 138-146.
    7. Mathijs Haas & Maarten Kroesen & Caspar Chorus & Sascha Hoogendoorn-Lanser & Serge Hoogendoorn, 2022. "E-bike user groups and substitution effects: evidence from longitudinal travel data in the Netherlands," Transportation, Springer, vol. 49(3), pages 815-840, June.
    8. Ton, Danique & Duives, Dorine, 2021. "Understanding long-term changes in commuter mode use of a pilot featuring free e-bike trials," Transport Policy, Elsevier, vol. 105(C), pages 134-144.
    9. Li, Qiumeng & Fuerst, Franz & Luca, Davide, 2023. "Do shared E-bikes reduce urban carbon emissions?," Journal of Transport Geography, Elsevier, vol. 112(C).
    10. Hallberg, Martin & Rasmussen, Thomas Kjær & Rich, Jeppe, 2021. "Modelling the impact of cycle superhighways and electric bicycles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 397-418.
    11. Genikomsakis, Konstantinos N. & Galatoulas, Nikolaos-Fivos & Ioakimidis, Christos S., 2021. "Towards the development of a hotel-based e-bike rental service: Results from a stated preference survey and techno-economic analysis," Energy, Elsevier, vol. 215(PA).
    12. Downward, Paul & Rasciute, Simona, 2015. "Assessing the impact of the National Cycle Network and physical activity lifestyle on cycling behaviour in England," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 425-437.
    13. Pucher, John & Buehler, Ralph & Seinen, Mark, 2011. "Bicycling renaissance in North America? An update and re-appraisal of cycling trends and policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 451-475, July.
    14. Götschi, Thomas & Hintermann, Beat, 2013. "Valuation of public investment to support bicycling (FV-09)," Working papers 2013/02, Faculty of Business and Economics - University of Basel.
    15. Ralph Buehler & Jennifer Dill, 2016. "Bikeway Networks: A Review of Effects on Cycling," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 9-27, January.
    16. Schneider, Paul R., 2023. "From elements to policies: A Shovian social practice perspective on pathways to facilitate daily E-bike commuting," Transport Policy, Elsevier, vol. 143(C), pages 36-45.
    17. Ruiz, Tomás & Bernabé, José C., 2014. "Measuring factors influencing valuation of nonmotorized improvement measures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 195-211.
    18. Caulfield, Brian, 2014. "Re-cycling a city – Examining the growth of cycling in Dublin," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 216-226.
    19. Nkurunziza, Alphonse & Zuidgeest, Mark & Brussel, Mark & Van Maarseveen, Martin, 2012. "Examining the potential for modal change: Motivators and barriers for bicycle commuting in Dar-es-Salaam," Transport Policy, Elsevier, vol. 24(C), pages 249-259.
    20. Elliot Fishman & Christopher Cherry, 2016. "E-bikes in the Mainstream: Reviewing a Decade of Research," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 72-91, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:119:y:2020:i:c:s136403211930752x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.