IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2632-d548740.html
   My bibliography  Save this article

A Case Study of Thermal Evolution in the Vicinity of Geothermal Probes Following a Distributed TRT Method

Author

Listed:
  • Hans Schwarz

    (Geo-Centre of Northern Bavaria, Chair of Geology, Friedrich-Alexander University Erlangen-Nuremberg, Schlossgarten 5, 91054 Erlangen, Germany)

  • Borja Badenes

    (Institute of Information and Communication Technologies (ITACA), Universitat Politècnica de València, Camino de Vera S/N, 46022 València, Spain)

  • Jan Wagner

    (Geo-Centre of Northern Bavaria, Chair of Geology, Friedrich-Alexander University Erlangen-Nuremberg, Schlossgarten 5, 91054 Erlangen, Germany)

  • José Manuel Cuevas

    (Institute of Information and Communication Technologies (ITACA), Universitat Politècnica de València, Camino de Vera S/N, 46022 València, Spain)

  • Javier Urchueguía

    (Institute of Information and Communication Technologies (ITACA), Universitat Politècnica de València, Camino de Vera S/N, 46022 València, Spain)

  • David Bertermann

    (Geo-Centre of Northern Bavaria, Chair of Geology, Friedrich-Alexander University Erlangen-Nuremberg, Schlossgarten 5, 91054 Erlangen, Germany)

Abstract

To meet the stated climate change targets and to ensure the capability of meeting the current and future energy demands, there is an urgent need to develop renewable energy sources, such as geothermal systems. If geothermal systems are to be cost-efficient and are to enjoy public confidence, it is essential that they are designed and installed in accordance with the prevailing site-specific conditions. A thorough understanding of the thermal behaviour of the surrounding ground is, therefore, critical. In this work, we investigated temperature and its evolution in the vicinity of a shallow geothermal helix-shaped borehole heat exchanger (BHE). To measure the temperature close to the actual geothermal system, an additional U-tube probe was installed at the edge of the same borehole. A thermal load was then applied to the BHE, and the temperature was detected in the nearby U-tube. The temperature measurements were made with a GEOSniff monitoring device. To understand these localised temperature measurements in the context of the Valencia test site, ERT measurements were also performed. The GEOSniff device permits measurements to be made with very high depth resolution, which allows the thermal properties of the surrounding ground to be derived precisely, thus, enabling the identification of the different textural domains.

Suggested Citation

  • Hans Schwarz & Borja Badenes & Jan Wagner & José Manuel Cuevas & Javier Urchueguía & David Bertermann, 2021. "A Case Study of Thermal Evolution in the Vicinity of Geothermal Probes Following a Distributed TRT Method," Energies, MDPI, vol. 14(9), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2632-:d:548740
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2632/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2632/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dan Zhu & Philippe Ciais & Gerhard Krinner & Fabienne Maignan & Albert Jornet Puig & Gustaf Hugelius, 2019. "Controls of soil organic matter on soil thermal dynamics in the northern high latitudes," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    2. Aranzabal, Nordin & Martos, Julio & Steger, Hagen & Blum, Philipp & Soret, Jesús, 2019. "Temperature measurements along a vertical borehole heat exchanger: A method comparison," Renewable Energy, Elsevier, vol. 143(C), pages 1247-1258.
    3. Borja Badenes & Miguel Ángel Mateo Pla & Lenin G. Lemus-Zúñiga & Begoña Sáiz Mauleón & Javier F. Urchueguía, 2017. "On the Influence of Operational and Control Parameters in Thermal Response Testing of Borehole Heat Exchangers," Energies, MDPI, vol. 10(9), pages 1-15, September.
    4. Witte, Henk J.L., 2013. "Error analysis of thermal response tests," Applied Energy, Elsevier, vol. 109(C), pages 302-311.
    5. Wilke, Sascha & Menberg, Kathrin & Steger, Hagen & Blum, Philipp, 2020. "Advanced thermal response tests: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    6. Gultekin, Ahmet & Aydin, Murat & Sisman, Altug, 2019. "Effects of arrangement geometry and number of boreholes on thermal interaction coefficient of multi-borehole heat exchangers," Applied Energy, Elsevier, vol. 237(C), pages 163-170.
    7. Beier, Richard A. & Acuña, José & Mogensen, Palne & Palm, Björn, 2013. "Borehole resistance and vertical temperature profiles in coaxial borehole heat exchangers," Applied Energy, Elsevier, vol. 102(C), pages 665-675.
    8. Angelo Zarrella & Giuseppe Emmi & Samantha Graci & Michele De Carli & Matteo Cultrera & Giorgia Dalla Santa & Antonio Galgaro & David Bertermann & Johannes Müller & Luc Pockelé & Giulia Mezzasalma & D, 2017. "Thermal Response Testing Results of Different Types of Borehole Heat Exchangers: An Analysis and Comparison of Interpretation Methods," Energies, MDPI, vol. 10(6), pages 1-18, June.
    9. Luo, Jin & Rohn, Joachim & Xiang, Wei & Bayer, Manfred & Priess, Anna & Wilkmann, Lucas & Steger, Hagen & Zorn, Roman, 2015. "Experimental investigation of a borehole field by enhanced geothermal response test and numerical analysis of performance of the borehole heat exchangers," Energy, Elsevier, vol. 84(C), pages 473-484.
    10. Bujok, Petr & Grycz, David & Klempa, Martin & Kunz, Antonín & Porzer, Michal & Pytlik, Adam & Rozehnal, Zdeněk & Vojčinák, Petr, 2014. "Assessment of the influence of shortening the duration of TRT (thermal response test) on the precision of measured values," Energy, Elsevier, vol. 64(C), pages 120-129.
    11. Acuña, José & Palm, Björn, 2013. "Distributed thermal response tests on pipe-in-pipe borehole heat exchangers," Applied Energy, Elsevier, vol. 109(C), pages 312-320.
    12. Javier F. Urchueguía & Lenin-Guillermo Lemus-Zúñiga & Jose-Vicente Oliver-Villanueva & Borja Badenes & Miguel A. Mateo Pla & José Manuel Cuevas, 2018. "How Reliable Are Standard Thermal Response Tests? An Assessment Based on Long-Term Thermal Response Tests Under Different Operational Conditions," Energies, MDPI, vol. 11(12), pages 1-24, November.
    13. Thomas Hermans & Frédéric Nguyen & Tanguy Robert & Andre Revil, 2014. "Geophysical Methods for Monitoring Temperature Changes in Shallow Low Enthalpy Geothermal Systems," Energies, MDPI, vol. 7(8), pages 1-36, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joanna Piotrowska-Woroniak, 2021. "Assessment of Ground Regeneration around Borehole Heat Exchangers between Heating Seasons in Cold Climates: A Case Study in Bialystok (NE, Poland)," Energies, MDPI, vol. 14(16), pages 1-32, August.
    2. Gigot, Valériane & Francois, Bertrand & Huysmans, Marijke & Gerard, Pierre, 2023. "Monitoring of the thermal plume around a thermally activated borehole heat exchanger and characterization of the ground hydro-geothermal parameters," Renewable Energy, Elsevier, vol. 218(C).
    3. Urchueguia, Javier F. & Badenes, Borja & Mateo Pla, Miguel A. & Armengot, Bruno & Javadi, Hossein, 2024. "New trilobular geometry using advanced materials for experimentally validated enhanced heat transfer in shallow geothermal applications," Renewable Energy, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wilke, Sascha & Menberg, Kathrin & Steger, Hagen & Blum, Philipp, 2020. "Advanced thermal response tests: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Aneta Sapińska-Sliwa & Marc A. Rosen & Andrzej Gonet & Joanna Kowalczyk & Tomasz Sliwa, 2019. "A New Method Based on Thermal Response Tests for Determining Effective Thermal Conductivity and Borehole Resistivity for Borehole Heat Exchangers," Energies, MDPI, vol. 12(6), pages 1-22, March.
    3. Choi, Wonjun & Ooka, Ryozo, 2016. "Effect of disturbance on thermal response test, part 1: Development of disturbance analytical model, parametric study, and sensitivity analysis," Renewable Energy, Elsevier, vol. 85(C), pages 306-318.
    4. Zhang, Bo & Gu, Kai & Shi, Bin & Liu, Chun & Bayer, Peter & Wei, Guangqing & Gong, Xülong & Yang, Lei, 2020. "Actively heated fiber optics based thermal response test: A field demonstration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Raymond, Jasmin & Lamarche, Louis & Malo, Michel, 2015. "Field demonstration of a first thermal response test with a low power source," Applied Energy, Elsevier, vol. 147(C), pages 30-39.
    6. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    7. Joanna Piotrowska-Woroniak, 2021. "Assessment of Ground Regeneration around Borehole Heat Exchangers between Heating Seasons in Cold Climates: A Case Study in Bialystok (NE, Poland)," Energies, MDPI, vol. 14(16), pages 1-32, August.
    8. Yoshitaka Sakata & Takao Katsura & Ahmed A. Serageldin & Katsunori Nagano & Motoaki Ooe, 2021. "Evaluating Variability of Ground Thermal Conductivity within a Steep Site by History Matching Underground Distributed Temperatures from Thermal Response Tests," Energies, MDPI, vol. 14(7), pages 1-17, March.
    9. Alessandro Franco & Paolo Conti, 2020. "Clearing a Path for Ground Heat Exchange Systems: A Review on Thermal Response Test (TRT) Methods and a Geotechnical Routine Test for Estimating Soil Thermal Properties," Energies, MDPI, vol. 13(11), pages 1-21, June.
    10. Peng Li & Peng Guan & Jun Zheng & Bin Dou & Hong Tian & Xinsheng Duan & Hejuan Liu, 2020. "Field Test and Numerical Simulation on Heat Transfer Performance of Coaxial Borehole Heat Exchanger," Energies, MDPI, vol. 13(20), pages 1-19, October.
    11. Joanna Piotrowska-Woroniak, 2021. "Determination of the Selected Wells Operational Power with Borehole Heat Exchangers Operating in Real Conditions, Based on Experimental Tests," Energies, MDPI, vol. 14(9), pages 1-21, April.
    12. Yongjie Ma & Yanjun Zhang & Yuxiang Cheng & Yu Zhang & Xuefeng Gao & Hao Deng & Xin Zhang, 2022. "Influence of Different Heat Loads and Durations on the Field Thermal Response Test," Energies, MDPI, vol. 15(22), pages 1-17, November.
    13. Rapantova, Nada & Pospisil, Pavel & Koziorek, Jiri & Vojcinak, Petr & Grycz, David & Rozehnal, Zdenek, 2016. "Optimisation of experimental operation of borehole thermal energy storage," Applied Energy, Elsevier, vol. 181(C), pages 464-476.
    14. BniLam, Noori & Al-Khoury, Rafid, 2020. "Parameter identification algorithm for ground source heat pump systems," Applied Energy, Elsevier, vol. 264(C).
    15. Tomislav Kurevija & Adib Kalantar & Marija Macenić & Josipa Hranić, 2019. "Investigation of Steady-State Heat Extraction Rates for Different Borehole Heat Exchanger Configurations from the Aspect of Implementation of New TurboCollector™ Pipe System Design," Energies, MDPI, vol. 12(8), pages 1-17, April.
    16. Magraner, Teresa & Montero, Álvaro & Cazorla-Marín, Antonio & Montagud-Montalvá, Carla & Martos, Julio, 2021. "Thermal response test analysis for U-pipe vertical borehole heat exchangers under groundwater flow conditions," Renewable Energy, Elsevier, vol. 165(P1), pages 391-404.
    17. Tomasz Sliwa & Aneta Sapińska-Śliwa & Andrzej Gonet & Tomasz Kowalski & Anna Sojczyńska, 2021. "Geothermal Boreholes in Poland—Overview of the Current State of Knowledge," Energies, MDPI, vol. 14(11), pages 1-21, June.
    18. Maria Isabel Vélez Márquez & Jasmin Raymond & Daniela Blessent & Mikael Philippe & Nataline Simon & Olivier Bour & Louis Lamarche, 2018. "Distributed Thermal Response Tests Using a Heating Cable and Fiber Optic Temperature Sensing," Energies, MDPI, vol. 11(11), pages 1-24, November.
    19. Deng, Zhenpeng & Nian, Yongle & Cheng, Wen-long, 2023. "Estimation method of layered ground thermal conductivity for U-tube BHE based on the quasi-3D model," Renewable Energy, Elsevier, vol. 213(C), pages 121-133.
    20. Tomasz Sliwa & Kinga Jarosz & Marc A. Rosen & Anna Sojczyńska & Aneta Sapińska-Śliwa & Andrzej Gonet & Karolina Fąfera & Tomasz Kowalski & Martyna Ciepielowska, 2020. "Influence of Rotation Speed and Air Pressure on the Down the Hole Drilling Velocity for Borehole Heat Exchanger Installation," Energies, MDPI, vol. 13(11), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2632-:d:548740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.