IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13664-d1238800.html
   My bibliography  Save this article

Estimation of Layered Ground Thermal Properties for Deep Coaxial Ground Heat Exchanger

Author

Listed:
  • Changlong Wang

    (School of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan 243002, China)

  • Qiang Fu

    (School of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan 243002, China)

  • Wanyu Sun

    (School of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan 243002, China)

  • Jinli Lu

    (School of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan 243002, China)

  • Yanhong Sun

    (School of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan 243002, China)

  • Wanwan Li

    (School of Civil Engineering, Henan University of Technology, Zhengzhou 450001, China)

Abstract

A ground heat exchanger (GHE) can efficiently exploit geothermal energy, and a ground source heat pump (GSHP) is an important type of geothermal application. The distributed thermal response test (DTRT) is widely used to measure layered ground thermal properties for shallow GHEs, but nowadays, there is a lack of studies applying the DTRT to deep coaxial GHEs (DCGHEs). This study proposes a new parameter estimation method (PEM) by adopting the DTRT data of a DCGHE to estimate layered ground thermal properties and applies the proposed PEM to simulated DTRTs under different boundary conditions, and the estimated values of the layered ground thermal properties are compared with the true values. Under heat output rate or inlet temperature boundary conditions, the relative errors of the thermal conductivities and heat capacities of ground estimated using the proposed PEM are basically within 2% and 4%, respectively, except for shallower layers with a depth range of 0–800 m. The larger errors for shallower layers may be caused by weaker heat transfer between the fluid and ground, and the errors are basically lower for higher heat output rates. The predicted fluid temperature distributions during 120 d using the estimated values of the layered ground thermal properties match well with those using the true values. The results show that the proposed PEM is viable for DCGHE DTRT interpretation under heat output rate and inlet temperature boundary conditions, is a cost-effective way to establish key parameters for GSHP design, and would promote geothermal development.

Suggested Citation

  • Changlong Wang & Qiang Fu & Wanyu Sun & Jinli Lu & Yanhong Sun & Wanwan Li, 2023. "Estimation of Layered Ground Thermal Properties for Deep Coaxial Ground Heat Exchanger," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13664-:d:1238800
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13664/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13664/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Bo & Gu, Kai & Shi, Bin & Liu, Chun & Bayer, Peter & Wei, Guangqing & Gong, Xülong & Yang, Lei, 2020. "Actively heated fiber optics based thermal response test: A field demonstration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Zhang, Xueping & Han, Zongwei & Ji, Qiang & Zhang, Hongzhi & Li, Xiuming, 2021. "Thermal response tests for the identification of soil thermal parameters: A review," Renewable Energy, Elsevier, vol. 173(C), pages 1123-1135.
    3. Nian, Yong-Le & Wang, Xiang-Yang & Xie, Kun & Cheng, Wen-Long, 2020. "Estimation of ground thermal properties for coaxial BHE through distributed thermal response test," Renewable Energy, Elsevier, vol. 152(C), pages 1209-1219.
    4. Acuña, José & Palm, Björn, 2013. "Distributed thermal response tests on pipe-in-pipe borehole heat exchangers," Applied Energy, Elsevier, vol. 109(C), pages 312-320.
    5. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    6. Changlong Wang & Han Fang & Xin Wang & Jinli Lu & Yanhong Sun, 2022. "Study on the Influence of Borehole Heat Capacity on Deep Coaxial Borehole Heat Exchanger," Sustainability, MDPI, vol. 14(4), pages 1-11, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changlong Wang & Qiang Fu & Han Fang & Jinli Lu, 2022. "Estimation of Ground Thermal Properties of Shallow Coaxial Borehole Heat Exchanger Using an Improved Parameter Estimation Method," Sustainability, MDPI, vol. 14(12), pages 1-12, June.
    2. Yongjie Ma & Yanjun Zhang & Yuxiang Cheng & Yu Zhang & Xuefeng Gao & Kun Shan, 2022. "A Case Study of Field Thermal Response Test and Laboratory Test Based on Distributed Optical Fiber Temperature Sensor," Energies, MDPI, vol. 15(21), pages 1-20, October.
    3. Nian, Yong-Le & Wang, Xiang-Yang & Xie, Kun & Cheng, Wen-Long, 2020. "Estimation of ground thermal properties for coaxial BHE through distributed thermal response test," Renewable Energy, Elsevier, vol. 152(C), pages 1209-1219.
    4. Zhang, Bo & Gu, Kai & Wei, Zhuang & Jiang, Lin & Zheng, Yu & Wang, Baojun & Shi, Bin, 2023. "Governing factors for actively heated fiber optics based thermal response tests," Renewable Energy, Elsevier, vol. 219(P1).
    5. Raymond, Jasmin & Lamarche, Louis & Malo, Michel, 2015. "Field demonstration of a first thermal response test with a low power source," Applied Energy, Elsevier, vol. 147(C), pages 30-39.
    6. Tomasz Sliwa & Aneta Sapińska-Śliwa & Andrzej Gonet & Tomasz Kowalski & Anna Sojczyńska, 2021. "Geothermal Boreholes in Poland—Overview of the Current State of Knowledge," Energies, MDPI, vol. 14(11), pages 1-21, June.
    7. Maria Isabel Vélez Márquez & Jasmin Raymond & Daniela Blessent & Mikael Philippe & Nataline Simon & Olivier Bour & Louis Lamarche, 2018. "Distributed Thermal Response Tests Using a Heating Cable and Fiber Optic Temperature Sensing," Energies, MDPI, vol. 11(11), pages 1-24, November.
    8. Aneta Sapińska-Sliwa & Marc A. Rosen & Andrzej Gonet & Joanna Kowalczyk & Tomasz Sliwa, 2019. "A New Method Based on Thermal Response Tests for Determining Effective Thermal Conductivity and Borehole Resistivity for Borehole Heat Exchangers," Energies, MDPI, vol. 12(6), pages 1-22, March.
    9. Hu, Xincheng & Banks, Jonathan & Wu, Linping & Liu, Wei Victor, 2020. "Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta," Renewable Energy, Elsevier, vol. 148(C), pages 1110-1123.
    10. Deng, Zhenpeng & Nian, Yongle & Cheng, Wen-long, 2023. "Estimation method of layered ground thermal conductivity for U-tube BHE based on the quasi-3D model," Renewable Energy, Elsevier, vol. 213(C), pages 121-133.
    11. Ana Vieira & Maria Alberdi-Pagola & Paul Christodoulides & Saqib Javed & Fleur Loveridge & Frederic Nguyen & Francesco Cecinato & João Maranha & Georgios Florides & Iulia Prodan & Gust Van Lysebetten , 2017. "Characterisation of Ground Thermal and Thermo-Mechanical Behaviour for Shallow Geothermal Energy Applications," Energies, MDPI, vol. 10(12), pages 1-51, December.
    12. Chao Huan & Sha Zhang & Xiaoxuan Zhao & Shengteng Li & Bo Zhang & Yujiao Zhao & Pengfei Tao, 2021. "Thermal Performance of Cemented Paste Backfill Body Considering Its Slurry Sedimentary Characteristics in Underground Backfill Stopes," Energies, MDPI, vol. 14(21), pages 1-18, November.
    13. Zhang, Linfeng & Zhang, Quan & Huang, Gongsheng & Du, Yaxing, 2014. "A p(t)-linear average method to estimate the thermal parameters of the borehole heat exchangers for in situ thermal response test," Applied Energy, Elsevier, vol. 131(C), pages 211-221.
    14. Wilke, Sascha & Menberg, Kathrin & Steger, Hagen & Blum, Philipp, 2020. "Advanced thermal response tests: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    15. Choi, Wonjun & Ooka, Ryozo, 2015. "Interpretation of disturbed data in thermal response tests using the infinite line source model and numerical parameter estimation method," Applied Energy, Elsevier, vol. 148(C), pages 476-488.
    16. Joanna Piotrowska-Woroniak, 2021. "Assessment of Ground Regeneration around Borehole Heat Exchangers between Heating Seasons in Cold Climates: A Case Study in Bialystok (NE, Poland)," Energies, MDPI, vol. 14(16), pages 1-32, August.
    17. Xie, Kun & Nian, Yong-Le & Cheng, Wen-Long, 2018. "Analysis and optimization of underground thermal energy storage using depleted oil wells," Energy, Elsevier, vol. 163(C), pages 1006-1016.
    18. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Liu, Wei Victor, 2021. "Retrofitting abandoned petroleum wells as doublet deep borehole heat exchangers for geothermal energy production—a numerical investigation," Renewable Energy, Elsevier, vol. 176(C), pages 115-134.
    19. Yujiang He & Xianbiao Bu, 2020. "Performance of Hybrid Single Well Enhanced Geothermal System and Solar Energy for Buildings Heating," Energies, MDPI, vol. 13(10), pages 1-10, May.
    20. Hans Schwarz & Borja Badenes & Jan Wagner & José Manuel Cuevas & Javier Urchueguía & David Bertermann, 2021. "A Case Study of Thermal Evolution in the Vicinity of Geothermal Probes Following a Distributed TRT Method," Energies, MDPI, vol. 14(9), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13664-:d:1238800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.