IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v119y2020ics1364032119307233.html
   My bibliography  Save this article

Geothermal resource and reserve assessment methodology: Overview, analysis and future directions

Author

Listed:
  • Ciriaco, Anthony E.
  • Zarrouk, Sadiq J.
  • Zakeri, Golbon

Abstract

Resource assessment and reserve estimation play a crucial role in the decision-making, financing, development, and operation of geothermal projects. The present study critically examines all existing resource assessment methodology and practices when quantifying power potential of geothermal fields. The potential generating capacity of geothermal projects at the early stage of development, where there is limited information about the resource, is typically estimated using the volumetric method. Sustainable operation and management of existing geothermal fields, on the other hand, rely on developing and updating a calibrated numerical reservoir model. To-date, the volumetric method and reservoir simulation remain the most appropriate tools to use for geothermal resource assessment. The former method is the recommended approach for projects that are still at the early stage of development, while the latter technique is for predicting sustainable production capacity after exploration drilling. However, building a numerical model for a project at the early due diligence stage is also useful and can complement the volumetric method. Most studies of resource assessment methodologies highlight the difficulty of obtaining accurate, predictable generating output potential. Quantification of uncertainty in predictable output is carried out using the Monte Carlo method. This review demonstrates that the probabilistic assessment using Experimental Design (ED) and Response Surface Methodology (RSM) is a more promising technique that can be easier and quicker to implement.

Suggested Citation

  • Ciriaco, Anthony E. & Zarrouk, Sadiq J. & Zakeri, Golbon, 2020. "Geothermal resource and reserve assessment methodology: Overview, analysis and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
  • Handle: RePEc:eee:rensus:v:119:y:2020:i:c:s1364032119307233
    DOI: 10.1016/j.rser.2019.109515
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119307233
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109515?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaya, Eylem & Zarrouk, Sadiq J. & O'Sullivan, Michael J., 2011. "Reinjection in geothermal fields: A review of worldwide experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 47-68, January.
    2. Casasso, Alessandro & Sethi, Rajandrea, 2016. "G.POT: A quantitative method for the assessment and mapping of the shallow geothermal potential," Energy, Elsevier, vol. 106(C), pages 765-773.
    3. Zhang, Keni & Lee, Bo-Heng & Ling, Lulu & Guo, Tai-Rong & Liu, Chih-Hsi & Ouyang, Shoung, 2016. "Modeling studies for production potential of Chingshui geothermal reservoir," Renewable Energy, Elsevier, vol. 94(C), pages 568-578.
    4. Varney, Josephine & Zarrouk, Sadiq J. & Bean, Nigel & Bendall, Betina, 2017. "Performance measures in geothermal power developements," Renewable Energy, Elsevier, vol. 101(C), pages 835-844.
    5. Quinao, Jaime Jose D. & Zarrouk, Sadiq J., 2018. "Geothermal resource assessment using Experimental Design and Response Surface Methods: The Ngatamariki geothermal field, New Zealand," Renewable Energy, Elsevier, vol. 116(PA), pages 324-334.
    6. Epting, Jannis & Müller, Matthias H. & Genske, Dieter & Huggenberger, Peter, 2018. "Relating groundwater heat-potential to city-scale heat-demand: A theoretical consideration for urban groundwater resource management," Applied Energy, Elsevier, vol. 228(C), pages 1499-1505.
    7. Liu, Xiaolei & Falcone, Gioia & Alimonti, Claudio, 2018. "A systematic study of harnessing low-temperature geothermal energy from oil and gas reservoirs," Energy, Elsevier, vol. 142(C), pages 346-355.
    8. Alcaraz, Mar & Vives, Luis & Vázquez-Suñé, Enric, 2017. "The T-I-GER method: A graphical alternative to support the design and management of shallow geothermal energy exploitations at the metropolitan scale," Renewable Energy, Elsevier, vol. 109(C), pages 213-221.
    9. Noorollahi, Younes & Itoi, Ryuichi, 2011. "Production capacity estimation by reservoir numerical simulation of northwest (NW) Sabalan geothermal field, Iran," Energy, Elsevier, vol. 36(7), pages 4552-4569.
    10. Bayer, Peter & Attard, Guillaume & Blum, Philipp & Menberg, Kathrin, 2019. "The geothermal potential of cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 17-30.
    11. Carlino, Stefano & Troiano, Antonio & Di Giuseppe, Maria Giulia & Tramelli, Anna & Troise, Claudia & Somma, Renato & De Natale, Giuseppe, 2016. "Exploitation of geothermal energy in active volcanic areas: A numerical modelling applied to high temperature Mofete geothermal field, at Campi Flegrei caldera (Southern Italy)," Renewable Energy, Elsevier, vol. 87(P1), pages 54-66.
    12. Rivera Diaz, Alexandre & Kaya, Eylem & Zarrouk, Sadiq J., 2016. "Reinjection in geothermal fields − A worldwide review update," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 105-162.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Guihong & Zhao, Zhihong & Xu, Haoran & Zhang, Jinping & Kong, Xiangjun & Yuan, Lijuan, 2022. "A robust assessment method of recoverable geothermal energy considering optimal development parameters," Renewable Energy, Elsevier, vol. 201(P1), pages 426-440.
    2. Sebestyén, Viktor, 2021. "Renewable and Sustainable Energy Reviews: Environmental impact networks of renewable energy power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Zhang, Bo & Gu, Kai & Shi, Bin & Liu, Chun & Bayer, Peter & Wei, Guangqing & Gong, Xülong & Yang, Lei, 2020. "Actively heated fiber optics based thermal response test: A field demonstration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Duggal, R. & Rayudu, R. & Hinkley, J. & Burnell, J. & Wieland, C. & Keim, M., 2022. "A comprehensive review of energy extraction from low-temperature geothermal resources in hydrocarbon fields," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Maximilian Frick & Stefan Kranz & Ben Norden & David Bruhn & Sven Fuchs, 2022. "Geothermal Resources and ATES Potential of Mesozoic Reservoirs in the North German Basin," Energies, MDPI, vol. 15(6), pages 1-26, March.
    6. Luo, Siqiong & Wang, Jingyuan & Tan, Xiaoqing & Meng, Xianhong & Shang, Lunyu & Li, Hongmei & Zhou, Bingrong & Chen, Qi, 2024. "Characteristics of ground surface heat flux for alpine vegetation in freeze-thaw cycles in the three river source region," Renewable Energy, Elsevier, vol. 221(C).
    7. Chen, Heng & Wang, Yihan & Li, Jiarui & Xu, Gang & Lei, Jing & Liu, Tong, 2022. "Thermodynamic analysis and economic assessment of an improved geothermal power system integrated with a biomass-fired cogeneration plant," Energy, Elsevier, vol. 240(C).
    8. Riccardo Basosi & Roberto Bonciani & Dario Frosali & Giampaolo Manfrida & Maria Laura Parisi & Franco Sansone, 2020. "Life Cycle Analysis of a Geothermal Power Plant: Comparison of the Environmental Performance with Other Renewable Energy Systems," Sustainability, MDPI, vol. 12(7), pages 1-29, April.
    9. Haiwen Chen & Feng Zheng & Rongcai Song & Chao Zhang & Ben Dong & Jiahao Zhang & Yan Zhang & Tao Wu, 2024. "Geothermal Resource Assessment and Development Recommendations for the Huangliu Formation in the Central Depression of the Yinggehai Basin," Sustainability, MDPI, vol. 16(16), pages 1-24, August.
    10. Mengning Liu & Chao Liu & Qingke Yang & Jinli Zhao, 2024. "Spatiotemporal Characteristics and Interactive Effect between Urbanization and Sustainable Urban Development: Evidence from Yangtze River Delta," Land, MDPI, vol. 13(7), pages 1-17, July.
    11. Tut Haklıdır, Füsun S., 2020. "The importance of long-term well management in geothermal power systems using fuzzy control: A Western Anatolia (Turkey) case study," Energy, Elsevier, vol. 213(C).
    12. Moraga, J. & Duzgun, H.S. & Cavur, M. & Soydan, H., 2022. "The Geothermal Artificial Intelligence for geothermal exploration," Renewable Energy, Elsevier, vol. 192(C), pages 134-149.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Epting, Jannis & Böttcher, Fabian & Mueller, Matthias H. & García-Gil, Alejandro & Zosseder, Kai & Huggenberger, Peter, 2020. "City-scale solutions for the energy use of shallow urban subsurface resources – Bridging the gap between theoretical and technical potentials," Renewable Energy, Elsevier, vol. 147(P1), pages 751-763.
    2. Böttcher, Fabian & Casasso, Alessandro & Götzl, Gregor & Zosseder, Kai, 2019. "TAP - Thermal aquifer Potential: A quantitative method to assess the spatial potential for the thermal use of groundwater," Renewable Energy, Elsevier, vol. 142(C), pages 85-95.
    3. Liu, Guihong & Zhao, Zhihong & Xu, Haoran & Zhang, Jinping & Kong, Xiangjun & Yuan, Lijuan, 2022. "A robust assessment method of recoverable geothermal energy considering optimal development parameters," Renewable Energy, Elsevier, vol. 201(P1), pages 426-440.
    4. Bayer, Peter & Attard, Guillaume & Blum, Philipp & Menberg, Kathrin, 2019. "The geothermal potential of cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 17-30.
    5. Jalilinasrabady, Saeid & Tanaka, Toshiaki & Itoi, Ryuichi & Goto, Hiroki, 2021. "Numerical simulation and production prediction assessment of Takigami geothermal reservoir," Energy, Elsevier, vol. 236(C).
    6. Walch, Alina & Mohajeri, Nahid & Gudmundsson, Agust & Scartezzini, Jean-Louis, 2021. "Quantifying the technical geothermal potential from shallow borehole heat exchangers at regional scale," Renewable Energy, Elsevier, vol. 165(P1), pages 369-380.
    7. Tissen, Carolin & Menberg, Kathrin & Benz, Susanne A. & Bayer, Peter & Steiner, Cornelia & Götzl, Gregor & Blum, Philipp, 2021. "Identifying key locations for shallow geothermal use in Vienna," Renewable Energy, Elsevier, vol. 167(C), pages 1-19.
    8. Cassina, Lisa & Laloui, Lyesse & Rotta Loria, Alessandro F., 2022. "Thermal interactions among vertical geothermal borehole fields," Renewable Energy, Elsevier, vol. 194(C), pages 1204-1220.
    9. Mohammadzadeh Bina, Saeid & Jalilinasrabady, Saeid & Fujii, Hikari & Pambudi, Nugroho Agung, 2018. "Classification of geothermal resources in Indonesia by applying exergy concept," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 499-506.
    10. Fleuchaus, Paul & Schüppler, Simon & Godschalk, Bas & Bakema, Guido & Blum, Philipp, 2020. "Performance analysis of Aquifer Thermal Energy Storage (ATES)," Renewable Energy, Elsevier, vol. 146(C), pages 1536-1548.
    11. Kaya, Eylem & Callos, Victor & Mannington, Warren, 2018. "CO2 –water mixture reinjection into two-phase liquid dominated geothermal reservoirs," Renewable Energy, Elsevier, vol. 126(C), pages 652-667.
    12. Melikoglu, Mehmet, 2017. "Geothermal energy in Turkey and around the World: A review of the literature and an analysis based on Turkey's Vision 2023 energy targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 485-492.
    13. Mahmoodpour, Saeed & Singh, Mrityunjay & Turan, Aysegul & Bär, Kristian & Sass, Ingo, 2022. "Simulations and global sensitivity analysis of the thermo-hydraulic-mechanical processes in a fractured geothermal reservoir," Energy, Elsevier, vol. 247(C).
    14. Halilovic, Smajil & Böttcher, Fabian & Zosseder, Kai & Hamacher, Thomas, 2023. "Optimizing the spatial arrangement of groundwater heat pumps and their well locations," Renewable Energy, Elsevier, vol. 217(C).
    15. Walch, Alina & Li, Xiang & Chambers, Jonathan & Mohajeri, Nahid & Yilmaz, Selin & Patel, Martin & Scartezzini, Jean-Louis, 2022. "Shallow geothermal energy potential for heating and cooling of buildings with regeneration under climate change scenarios," Energy, Elsevier, vol. 244(PB).
    16. Miocic, Johannes M. & Krecher, Marc, 2022. "Estimation of shallow geothermal potential to meet building heating demand on a regional scale," Renewable Energy, Elsevier, vol. 185(C), pages 629-640.
    17. Sławomir Kurpaska & Mirosław Janowski & Maciej Gliniak & Anna Krakowiak-Bal & Urszula Ziemiańczyk, 2021. "The Use of Geothermal Energy to Heating Crops under Cover: A Case Study of Poland," Energies, MDPI, vol. 14(9), pages 1-25, May.
    18. Korhonen, Kimmo & Markó, Ábel & Bischoff, Alan & Szijártó, Márk & Mádl-Szőnyi, Judit, 2023. "Infinite borehole field model—a new approach to estimate the shallow geothermal potential of urban areas applied to central Budapest, Hungary," Renewable Energy, Elsevier, vol. 208(C), pages 263-274.
    19. Franco, Alessandro & Vaccaro, Maurizio, 2014. "Numerical simulation of geothermal reservoirs for the sustainable design of energy plants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 987-1002.
    20. Elisa Heim & Marius Laska & Ralf Becker & Norbert Klitzsch, 2022. "Estimating the Subsurface Thermal Conductivity and Its Uncertainty for Shallow Geothermal Energy Use—A Workflow and Geoportal Based on Publicly Available Data," Energies, MDPI, vol. 15(10), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:119:y:2020:i:c:s1364032119307233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.