IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v98y2016icp51-56.html
   My bibliography  Save this article

Optimization of concomitant production of cellulase and xylanase from Rhizopus oryzae SN5 through EVOP-factorial design technique and application in Sorghum Stover based bioethanol production

Author

Listed:
  • Pandey, Ajay Kumar
  • Edgard, Gnansounou
  • Negi, Sangeeta

Abstract

Current study deals with the production of cellulases and xylanases from the Rhizopus oryzae SN5 isolated from composed soil of Himalayan pine forest, in order to meet the challenges of lignocellulosic biomass based biorefineries. Culture parameters for concomitant production of cellulase and xylanase were optimized through EVOP-factorial design technique under solid state fermentation. And maximum yield of cellulase and xylanase were obtained 437.54 U/gds and 273.83 U/gds, respectively at 30 °C and pH 6.0 after 5 days of incubation. On applying these enzymes for the saccharification of the dilute acid pretreated Sorghum Stover (SS), 0.407 g/g sugar was yielded. This hydrolysate on fermentation, yielded 0.411 g/g ehanol with Saccharomyces cerevisiae (NCIM 3288), which could be considered a good conversion. Therefore, Rhizopus oryzae SN5 was found as potent strain for the production of the cocktail of lignocellulosic biomasss hydrolytic enzymes and would be promising tool in the area of lignocellulose based bio-refineries.

Suggested Citation

  • Pandey, Ajay Kumar & Edgard, Gnansounou & Negi, Sangeeta, 2016. "Optimization of concomitant production of cellulase and xylanase from Rhizopus oryzae SN5 through EVOP-factorial design technique and application in Sorghum Stover based bioethanol production," Renewable Energy, Elsevier, vol. 98(C), pages 51-56.
  • Handle: RePEc:eee:renene:v:98:y:2016:i:c:p:51-56
    DOI: 10.1016/j.renene.2016.05.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116304815
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.05.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jack P. C. Kleijnen, 2015. "Response Surface Methodology," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104, Springer.
    2. Sarkar, Nibedita & Ghosh, Sumanta Kumar & Bannerjee, Satarupa & Aikat, Kaustav, 2012. "Bioethanol production from agricultural wastes: An overview," Renewable Energy, Elsevier, vol. 37(1), pages 19-27.
    3. Sindhu, Raveendran & Kuttiraja, Mathiyazhakan & Binod, Parameswaran & Sukumaran, Rajeev Kumar & Pandey, Ashok, 2014. "Physicochemical characterization of alkali pretreated sugarcane tops and optimization of enzymatic saccharification using response surface methodology," Renewable Energy, Elsevier, vol. 62(C), pages 362-368.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ezeilo, Uchenna R. & Wahab, Roswanira Abdul & Mahat, Naji Arafat, 2020. "Optimization studies on cellulase and xylanase production by Rhizopus oryzae UC2 using raw oil palm frond leaves as substrate under solid state fermentation," Renewable Energy, Elsevier, vol. 156(C), pages 1301-1312.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    2. Marta Ramos & Ana Paula Soares Dias & Jaime Filipe Puna & João Gomes & João Carlos Bordado, 2019. "Biodiesel Production Processes and Sustainable Raw Materials," Energies, MDPI, vol. 12(23), pages 1-30, November.
    3. Vaz, Fernanda Leitão & da Rocha Lins, Jennyfer & Alves Alencar, Bárbara Ribeiro & Silva de Abreu, Íthalo Barbosa & Vidal, Esteban Espinosa & Ribeiro, Ester & Valadares de Sá Barretto Sampaio, Everardo, 2021. "Chemical pretreatment of sugarcane bagasse with liquid fraction recycling," Renewable Energy, Elsevier, vol. 174(C), pages 666-673.
    4. Tye, Ying Ying & Lee, Keat Teong & Wan Abdullah, Wan Nadiah & Leh, Cheu Peng, 2016. "The world availability of non-wood lignocellulosic biomass for the production of cellulosic ethanol and potential pretreatments for the enhancement of enzymatic saccharification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 155-172.
    5. Hyun Jin Jung & Hyun Kwak & Jinyoung Chun & Kyeong Keun Oh, 2021. "Alkaline Fractionation and Subsequent Production of Nano-Structured Silica and Cellulose Nano-Fibrils for the Comprehensive Utilization of Rice Husk," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    6. Zabed, H. & Sahu, J.N. & Boyce, A.N. & Faruq, G., 2016. "Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 751-774.
    7. Shen-Tsu Wang, 2016. "Integrating grey sequencing with the genetic algorithm--immune algorithm to optimise touch panel cover glass polishing process parameter design," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4882-4893, August.
    8. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    9. Bayrakci, Asiye Gül & Koçar, Günnur, 2014. "Second-generation bioethanol production from water hyacinth and duckweed in Izmir: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 306-316.
    10. Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
    11. Kaushik, Lav Kumar & Muthukumar, P., 2020. "Thermal and economic performance assessments of waste cooking oil /kerosene blend operated pressure cook-stove with porous radiant burner," Energy, Elsevier, vol. 206(C).
    12. Yaman, Hayri & Yesilyurt, Murat Kadir & Uslu, Samet, 2022. "Simultaneous optimization of multiple engine parameters of a 1-heptanol / gasoline fuel blends operated a port-fuel injection spark-ignition engine using response surface methodology approach," Energy, Elsevier, vol. 238(PC).
    13. Visva Bharati Barua & Mariya Munir, 2021. "A Review on Synchronous Microalgal Lipid Enhancement and Wastewater Treatment," Energies, MDPI, vol. 14(22), pages 1-20, November.
    14. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    15. D. M. D. Rasika & Janak K. Vidanarachchi & Selma F. Luiz & Denise Rosane Perdomo Azeredo & Adriano G. Cruz & Chaminda Senaka Ranadheera, 2021. "Probiotic Delivery through Non-Dairy Plant-Based Food Matrices," Agriculture, MDPI, vol. 11(7), pages 1-23, June.
    16. Taghizadeh-Alisaraei, Ahmad & Motevali, Ali & Ghobadian, Barat, 2019. "Ethanol production from date wastes: Adapted technologies, challenges, and global potential," Renewable Energy, Elsevier, vol. 143(C), pages 1094-1110.
    17. Muhammad, Gul & Potchamyou Ngatcha, Ange Douglas & Lv, Yongkun & Xiong, Wenlong & El-Badry, Yaser A. & Asmatulu, Eylem & Xu, Jingliang & Alam, Md Asraful, 2022. "Enhanced biodiesel production from wet microalgae biomass optimized via response surface methodology and artificial neural network," Renewable Energy, Elsevier, vol. 184(C), pages 753-764.
    18. Renzi, Massimiliano & Bietresato, Marco & Mazzetto, Fabrizio, 2016. "An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends," Energy, Elsevier, vol. 115(P1), pages 1069-1080.
    19. Chamberlin Stéphane Azebaze Mboving & Zbigniew Hanzelka & Andrzej Firlit, 2022. "Analysis of the Factors Having an Influence on the LC Passive Harmonic Filter Work Efficiency," Energies, MDPI, vol. 15(5), pages 1-51, March.
    20. Lu Chen & Qincheng Chen & Pinhua Rao & Lili Yan & Alghashm Shakib & Guoqing Shen, 2018. "Formulating and Optimizing a Novel Biochar-Based Fertilizer for Simultaneous Slow-Release of Nitrogen and Immobilization of Cadmium," Sustainability, MDPI, vol. 10(8), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:98:y:2016:i:c:p:51-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.