IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v93y2016icp483-501.html
   My bibliography  Save this article

Effect of nozzle and combustion chamber geometry on the performance of a diesel engine operated on dual fuel mode using renewable fuels

Author

Listed:
  • Yaliwal, V.S.
  • Banapurmath, N.R.
  • Gireesh, N.M.
  • Hosmath, R.S.
  • Donateo, Teresa
  • Tewari, P.G.

Abstract

Renewable and alternative fuels have numerous advantages compared to fossil fuels as they are biodegradable, providing energy security and foreign exchange saving and addressing environmental concerns, and socio-economic issues as well. Therefore renewable fuels can be predominantly used as fuel for transportation and power generation applications. In view of this background, effect of nozzle and combustion chamber geometry on the performance, combustion and emission characteristics have been investigated in a single cylinder, four stroke water cooled direct injection (DI) compression ignition (CI) engine operated on dual fuel mode using Honge methyl ester (HOME) and producer gas induction. In the present experimental investigation, an effort has been made to enhance the performance of a dual fuel engine utilizing different nozzle orifice and combustion chamber configurations. In the first phase of the work, injector nozzle (3, 4 and 5 hole injector nozzle, each having 0.2, 0.25 and 0.3 mm hole diameter and injection pressure (varied from 210 to 240 bar in steps of 10 bar) was optimized. Subsequently in the next phase of the work, combustion chamber for optimum performance was investigated. In order to match proper combustion chamber for optimum nozzle geometry, two types of combustion chambers such as hemispherical and re-entrant configurations were used. Re-entrant type combustion chamber and 230 bar injection pressure, 4 hole and 0.25 mm nozzle orifice have shown maximum performance. Results of investigation on HOME-producer gas operation showed 4–5% increased brake thermal efficiency with reduced emission levels. However, more research and development of technology should be devoted to this field to further enhance the performance and feasibility of these fuels for dual fuel operation and future exploitations.

Suggested Citation

  • Yaliwal, V.S. & Banapurmath, N.R. & Gireesh, N.M. & Hosmath, R.S. & Donateo, Teresa & Tewari, P.G., 2016. "Effect of nozzle and combustion chamber geometry on the performance of a diesel engine operated on dual fuel mode using renewable fuels," Renewable Energy, Elsevier, vol. 93(C), pages 483-501.
  • Handle: RePEc:eee:renene:v:93:y:2016:i:c:p:483-501
    DOI: 10.1016/j.renene.2016.03.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811630204X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.03.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Banapurmath, N.R. & Tewari, P.G., 2009. "Comparative performance studies of a 4-stroke CI engine operated on dual fuel mode with producer gas and Honge oil and its methyl ester (HOME) with and without carburetor," Renewable Energy, Elsevier, vol. 34(4), pages 1009-1015.
    2. Jaichandar, S. & Senthil Kumar, P. & Annamalai, K., 2012. "Combined effect of injection timing and combustion chamber geometry on the performance of a biodiesel fueled diesel engine," Energy, Elsevier, vol. 47(1), pages 388-394.
    3. Agarwal, Avinash Kumar & Dhar, Atul, 2013. "Experimental investigations of performance, emission and combustion characteristics of Karanja oil blends fuelled DICI engine," Renewable Energy, Elsevier, vol. 52(C), pages 283-291.
    4. Yaliwal, V.S. & Banapurmath, N.R. & Gireesh, N.M. & Tewari, P.G., 2014. "Production and utilization of renewable and sustainable gaseous fuel for power generation applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 608-627.
    5. Banapurmath, N.R. & Tewari, P.G. & Hosmath, R.S., 2008. "Experimental investigations of a four-stroke single cylinder direct injection diesel engine operated on dual fuel mode with producer gas as inducted fuel and Honge oil and its methyl ester (HOME) as i," Renewable Energy, Elsevier, vol. 33(9), pages 2007-2018.
    6. Donateo, Teresa & Tornese, Federica & Laforgia, Domenico, 2013. "Computer-aided conversion of an engine from diesel to methane," Applied Energy, Elsevier, vol. 108(C), pages 8-23.
    7. Hwang, Joonsik & Qi, Donghui & Jung, Yongjin & Bae, Choongsik, 2014. "Effect of injection parameters on the combustion and emission characteristics in a common-rail direct injection diesel engine fueled with waste cooking oil biodiesel," Renewable Energy, Elsevier, vol. 63(C), pages 9-17.
    8. Sahoo, B.B. & Sahoo, N. & Saha, U.K., 2009. "Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines--A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1151-1184, August.
    9. Ravindranath, N.H. & Balachandra, P., 2009. "Sustainable bioenergy for India: Technical, economic and policy analysis," Energy, Elsevier, vol. 34(8), pages 1003-1013.
    10. Ramadhas, A.S. & Jayaraj, S. & Muraleedharan, C., 2008. "Dual fuel mode operation in diesel engines using renewable fuels: Rubber seed oil and coir-pith producer gas," Renewable Energy, Elsevier, vol. 33(9), pages 2077-2083.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Fiore, M. & Magi, V. & Viggiano, A., 2020. "Internal combustion engines powered by syngas: A review," Applied Energy, Elsevier, vol. 276(C).
    3. Hussein A. Mahmood & Nor Mariah. Adam & B. B. Sahari & S. U. Masuri, 2017. "New Design of a CNG-H 2 -AIR Mixer for Internal Combustion Engines: An Experimental and Numerical Study," Energies, MDPI, vol. 10(9), pages 1-27, September.
    4. T. M. Yunus Khan, 2020. "A Review of Performance-Enhancing Innovative Modifications in Biodiesel Engines," Energies, MDPI, vol. 13(17), pages 1-22, August.
    5. Goel, Varun & Kumar, Naresh & Singh, Paramvir, 2018. "Impact of modified parameters on diesel engine characteristics using biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2716-2729.
    6. Jaichandar, S. & Thamaraikannan, M. & Yogaraj, D. & Samuelraj, D., 2019. "A comprehensive study on the effects of internal air jet piston on the performance of a JOME fueled DI diesel engine," Energy, Elsevier, vol. 185(C), pages 1174-1182.
    7. Patil, Basavaras B. & Topannavar, S.N. & Akkoli, K.M. & Shivashimpi, M.M. & Kattimani, Sunilkumar S., 2022. "Experimental investigation to optimize nozzle geometry and compression ratio along with injection pressure on single cylinder DI diesel engine operated with AOME biodiesel," Energy, Elsevier, vol. 254(PA).
    8. Feng, Renhua & Li, Guanghua & Sun, Zhengwei & Hu, Xiulin & Deng, Banglin & Fu, Jianqin, 2023. "Potential of emission reduction of a turbo-charged non-road diesel engine without aftertreatment under multiple operating scenarios," Energy, Elsevier, vol. 263(PB).
    9. Ali Diané & Gounkaou Woro Yomi & Sidiki Zongo & Tizane Daho & Hervé Jeanmart, 2023. "Characterization, at Partial Loads, of the Combustion and Emissions of a Dual-Fuel Engine Burning Diesel and a Lean Gas Surrogate," Energies, MDPI, vol. 16(15), pages 1-16, July.
    10. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    11. Sheriff, S. Abdul & Kumar, Indrala Kishan & Mandhatha, Petluri Sai & Jambal, Samraj Sunder & Sellappan, Raja & Ashok, B. & Nanthagopal, K., 2020. "Emission reduction in CI engine using biofuel reformulation strategies through nano additives for atmospheric air quality improvement," Renewable Energy, Elsevier, vol. 147(P1), pages 2295-2308.
    12. Khayum, Naseem & Anbarasu, S. & Murugan, S., 2021. "Optimization of fuel injection parameters and compression ratio of a biogas fueled diesel engine using methyl esters of waste cooking oil as a pilot fuel," Energy, Elsevier, vol. 221(C).
    13. Sharma, Mohit & Kaushal, Rajneesh, 2020. "Performance and emission analysis of a dual fuel variable compression ratio (VCR) CI engine utilizing producer gas derived from walnut shells," Energy, Elsevier, vol. 192(C).
    14. Yaliwal, V.S. & Banapurmath, N.R. & Gaitonde, V.N. & Malipatil, M.D., 2019. "Simultaneous optimization of multiple operating engine parameters of a biodiesel-producer gas operated compression ignition (CI) engine coupled with hydrogen using response surface methodology," Renewable Energy, Elsevier, vol. 139(C), pages 944-959.
    15. Soudagar, Manzoore Elahi M. & Mujtaba, M.A. & Safaei, Mohammad Reza & Afzal, Asif & V, Dhana Raju & Ahmed, Waqar & Banapurmath, N.R. & Hossain, Nazia & Bashir, Shahid & Badruddin, Irfan Anjum & Goodar, 2021. "Effect of Sr@ZnO nanoparticles and Ricinus communis biodiesel-diesel fuel blends on modified CRDI diesel engine characteristics," Energy, Elsevier, vol. 215(PA).
    16. Saravanan, S. & Kaliyanasunder, R. & Rajesh Kumar, B. & Lakshmi Narayana Rao, G., 2020. "Effect of design parameters on performance and emissions of a CI engine operated with diesel-biodiesel- higher alcohol blends," Renewable Energy, Elsevier, vol. 148(C), pages 425-436.
    17. Dong, Shijun & Wang, Zhaowen & Yang, Can & Ou, Biao & Lu, Hongguang & Xu, Haocheng & Cheng, Xiaobei, 2018. "Investigations on the effects of fuel stratification on auto-ignition and combustion process of an ethanol/diesel dual-fuel engine," Applied Energy, Elsevier, vol. 230(C), pages 19-30.
    18. Fayad, Mohammed A. & Tsolakis, Athanasios & Martos, Francisco J., 2020. "Influence of alternative fuels on combustion and characteristics of particulate matter morphology in a compression ignition diesel engine," Renewable Energy, Elsevier, vol. 149(C), pages 962-969.
    19. Akbari, Shahin & Tashakori, Saeed & Ranjbar, Ali Mohammad & Jahanshahi, Javad Afshar & Sadeghi, Sadegh & Bidabadi, Mehdi & Xu, Fei, 2021. "Analytical modeling of lycopodium-propane dual-fuel combustion system in premixed mode in counter-flow configuration," Renewable Energy, Elsevier, vol. 165(P1), pages 783-798.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Das, S. & Kashyap, D. & Kalita, P. & Kulkarni, V. & Itaya, Y., 2020. "Clean gaseous fuel application in diesel engine: A sustainable option for rural electrification in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    2. Nayak, Swarup Kumar & Chandra Mishra, Purna, 2019. "Combustion characteristics, performances and emissions of a biodiesel-producer gas dual fuel engine with varied combustor geometry," Energy, Elsevier, vol. 168(C), pages 585-600.
    3. Yaliwal, V.S. & Banapurmath, N.R. & Gireesh, N.M. & Tewari, P.G., 2014. "Production and utilization of renewable and sustainable gaseous fuel for power generation applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 608-627.
    4. Hernández, J.J. & Lapuerta, M. & Barba, J., 2015. "Effect of partial replacement of diesel or biodiesel with gas from biomass gasification in a diesel engine," Energy, Elsevier, vol. 89(C), pages 148-157.
    5. K. M. Akkoli & N. R. Banapurmath & Suresh G & Manzoore Elahi M. Soudagar & T. M. Yunus Khan & Maughal Ahmed Ali Baig & M. A. Mujtaba & Nazia Hossain & Kiran Shahapurkar & Ashraf Elfasakhany & Mishal A, 2021. "Effect of Producer Gas from Redgram Stalk and Combustion Chamber Types on the Emission and Performance Characteristics of Diesel Engine," Energies, MDPI, vol. 14(18), pages 1-17, September.
    6. Shameer, P. Mohamed & Ramesh, K., 2018. "Assessment on the consequences of injection timing and injection pressure on combustion characteristics of sustainable biodiesel fuelled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 45-61.
    7. No, Soo-Young, 2011. "Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 131-149, January.
    8. Sharma, Mohit & Kaushal, Rajneesh, 2020. "Performance and emission analysis of a dual fuel variable compression ratio (VCR) CI engine utilizing producer gas derived from walnut shells," Energy, Elsevier, vol. 192(C).
    9. Barik, Debabrata & Murugan, S. & Sivaram, N.M. & Baburaj, E. & Shanmuga Sundaram, P., 2017. "Experimental investigation on the behavior of a direct injection diesel engine fueled with Karanja methyl ester-biogas dual fuel at different injection timings," Energy, Elsevier, vol. 118(C), pages 127-138.
    10. Soudagar, Manzoore Elahi M. & Mujtaba, M.A. & Safaei, Mohammad Reza & Afzal, Asif & V, Dhana Raju & Ahmed, Waqar & Banapurmath, N.R. & Hossain, Nazia & Bashir, Shahid & Badruddin, Irfan Anjum & Goodar, 2021. "Effect of Sr@ZnO nanoparticles and Ricinus communis biodiesel-diesel fuel blends on modified CRDI diesel engine characteristics," Energy, Elsevier, vol. 215(PA).
    11. K. M. V. Ravi Teja & P. Issac Prasad & K. Vijaya Kumar Reddy & Nagaraj R. Banapurmath & Muhammad A. Kalam & C. Ahamed Saleel, 2022. "Effect of Injection Parameters on the Performance of Compression Ignition Engine Powered with Jamun Seed and Cashew Nutshell B20 Biodiesel Blends," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    12. Mohamed Shameer, P. & Ramesh, K. & Sakthivel, R. & Purnachandran, R., 2017. "Effects of fuel injection parameters on emission characteristics of diesel engines operating on various biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1267-1281.
    13. Ramos da Costa, Yoge Jerônimo & Barbosa de Lima, Antonio Gilson & Bezerra Filho, Celso Rosendo & de Araujo Lima, Laerte, 2012. "Energetic and exergetic analyses of a dual-fuel diesel engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4651-4660.
    14. Khandal, S.V. & Banapurmath, N.R. & Gaitonde, V.N. & Hiremath, S.S., 2017. "Paradigm shift from mechanical direct injection diesel engines to advanced injection strategies of diesel homogeneous charge compression ignition (HCCI) engines- A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 369-384.
    15. Khan, Shahanwaz & Panua, Rajsekhar & Bose, Probir Kumar, 2019. "The impact of combustion chamber configuration on combustion and emissions of a single cylinder diesel engine fuelled with soybean methyl ester blends with diesel," Renewable Energy, Elsevier, vol. 143(C), pages 335-351.
    16. N. Manjunath & C. R. Rajashekhar & J. Venkatesh & T. M. Yunus Khan & Vineet Tirth & Irfan Anjum Badruddin, 2021. "Forensic Studies on Spent Catalytic Converters to Examine the Effect of Diesel and B100 Pongamia Biodiesel on Emissions," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    17. Panneerselvam, N. & Murugesan, A. & Vijayakumar, C. & Kumaravel, A. & Subramaniam, D. & Avinash, A., 2015. "Effects of injection timing on bio-diesel fuelled engine characteristics—An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 17-31.
    18. Martínez, Juan Daniel & Mahkamov, Khamid & Andrade, Rubenildo V. & Silva Lora, Electo E., 2012. "Syngas production in downdraft biomass gasifiers and its application using internal combustion engines," Renewable Energy, Elsevier, vol. 38(1), pages 1-9.
    19. Raman, P. & Ram, N.K., 2013. "Performance analysis of an internal combustion engine operated on producer gas, in comparison with the performance of the natural gas and diesel engines," Energy, Elsevier, vol. 63(C), pages 317-333.
    20. S. M. Ashrafur Rahman & I. M. Rizwanul Fattah & Hwai Chyuan Ong & M. F. M. A. Zamri, 2021. "State-of-the-Art of Strategies to Reduce Exhaust Emissions from Diesel Engine Vehicles," Energies, MDPI, vol. 14(6), pages 1-24, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:93:y:2016:i:c:p:483-501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.