IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i19p10729-d644238.html
   My bibliography  Save this article

Forensic Studies on Spent Catalytic Converters to Examine the Effect of Diesel and B100 Pongamia Biodiesel on Emissions

Author

Listed:
  • N. Manjunath

    (Department of Mechanical Engineering, RNS Institute of Technology, Bangalore 560098, India)

  • C. R. Rajashekhar

    (Department of Mechanical Engineering, Mangalore Institute of Technology & Engineering, Mangalore 574225, India)

  • J. Venkatesh

    (Department of Automobile Engineering, PES College of Engineering, Mandya 571401, India)

  • T. M. Yunus Khan

    (Research Centre for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
    Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia)

  • Vineet Tirth

    (Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia)

  • Irfan Anjum Badruddin

    (Research Centre for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
    Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia)

Abstract

The ever-increasing demand for transport is sustained by fossil fuel-based internal combustion (IC) engines fitted with catalytic converters (CCs) while alternative options and fuels are still emerging. Biodiesel seems to be a potential alternate to diesel, but the formation of NO x and smoke are major issues. This study aimed to explore the effect of B100 Pongamia biodiesel on the performance of CCs and to assist the designers of compression ignition engines. This study included a comparison of deposits on the catalytic converter (CC) in the cases of diesel fuel and biodiesel. Forensic examination of the spent CCs after 250 h was performed by characterization using SEM/EDS. The amount and composition of the deposits were compared for the diesel and biodiesel, and the effectiveness of the CC. The study revealed that the efficiency of the CC increased in biodiesel. The amount of soot and deposits was greater at the engine side of the spent CC with diesel, including the atomic percentage (At. %) of C, while the minimum deposits and C At. % in the spent CC were at the exhaust side with biodiesel. Oxygen content in the deposits was greater in biodiesel. The efficiency and effectiveness of the CC increased with the biodiesel.

Suggested Citation

  • N. Manjunath & C. R. Rajashekhar & J. Venkatesh & T. M. Yunus Khan & Vineet Tirth & Irfan Anjum Badruddin, 2021. "Forensic Studies on Spent Catalytic Converters to Examine the Effect of Diesel and B100 Pongamia Biodiesel on Emissions," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10729-:d:644238
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/19/10729/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/19/10729/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kalghatgi, Gautam, 2018. "Is it really the end of internal combustion engines and petroleum in transport?," Applied Energy, Elsevier, vol. 225(C), pages 965-974.
    2. Ramalingam, Senthil & Rajendran, Silambarasan & Ganesan, Pranesh, 2018. "Performance improvement and exhaust emissions reduction in biodiesel operated diesel engine through the use of operating parameters and catalytic converter: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3215-3222.
    3. Banapurmath, N.R. & Tewari, P.G., 2009. "Comparative performance studies of a 4-stroke CI engine operated on dual fuel mode with producer gas and Honge oil and its methyl ester (HOME) with and without carburetor," Renewable Energy, Elsevier, vol. 34(4), pages 1009-1015.
    4. Banapurmath, N.R. & Tewari, P.G. & Hosmath, R.S., 2008. "Experimental investigations of a four-stroke single cylinder direct injection diesel engine operated on dual fuel mode with producer gas as inducted fuel and Honge oil and its methyl ester (HOME) as i," Renewable Energy, Elsevier, vol. 33(9), pages 2007-2018.
    5. Godiganur, Sharanappa & Suryanarayana Murthy, Ch. & Reddy, Rana Prathap, 2010. "Performance and emission characteristics of a Kirloskar HA394 diesel engine operated on fish oil methyl esters," Renewable Energy, Elsevier, vol. 35(2), pages 355-359.
    6. Banapurmath, N.R. & Tewari, P.G. & Hosmath, R.S., 2008. "Performance and emission characteristics of a DI compression ignition engine operated on Honge, Jatropha and sesame oil methyl esters," Renewable Energy, Elsevier, vol. 33(9), pages 1982-1988.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. No, Soo-Young, 2011. "Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 131-149, January.
    2. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
    3. Yaliwal, V.S. & Banapurmath, N.R. & Gireesh, N.M. & Hosmath, R.S. & Donateo, Teresa & Tewari, P.G., 2016. "Effect of nozzle and combustion chamber geometry on the performance of a diesel engine operated on dual fuel mode using renewable fuels," Renewable Energy, Elsevier, vol. 93(C), pages 483-501.
    4. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    5. Masera, Kemal & Hossain, Abul Kalam, 2023. "Advancement of biodiesel fuel quality and NOx emission control techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    6. Altarazi, Yazan S.M. & Abu Talib, Abd Rahim & Yu, Jianglong & Gires, Ezanee & Abdul Ghafir, Mohd Fahmi & Lucas, John & Yusaf, Talal, 2022. "Effects of biofuel on engines performance and emission characteristics: A review," Energy, Elsevier, vol. 238(PC).
    7. Yaliwal, V.S. & Banapurmath, N.R. & Gaitonde, V.N. & Malipatil, M.D., 2019. "Simultaneous optimization of multiple operating engine parameters of a biodiesel-producer gas operated compression ignition (CI) engine coupled with hydrogen using response surface methodology," Renewable Energy, Elsevier, vol. 139(C), pages 944-959.
    8. Xue, Jinlin & Grift, Tony E. & Hansen, Alan C., 2011. "Effect of biodiesel on engine performances and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1098-1116, February.
    9. Datta, Ambarish & Mandal, Bijan Kumar, 2016. "A comprehensive review of biodiesel as an alternative fuel for compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 799-821.
    10. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K. & Hazrat, M.A., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1129-1146.
    11. Kumar, Niraj & Varun, & Chauhan, Sant Ram, 2013. "Performance and emission characteristics of biodiesel from different origins: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 633-658.
    12. Panneerselvam, N. & Murugesan, A. & Vijayakumar, C. & Kumaravel, A. & Subramaniam, D. & Avinash, A., 2015. "Effects of injection timing on bio-diesel fuelled engine characteristics—An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 17-31.
    13. Sadeghinezhad, E. & Kazi, S.N. & Sadeghinejad, Foad & Badarudin, A. & Mehrali, Mohammad & Sadri, Rad & Reza Safaei, Mohammad, 2014. "A comprehensive literature review of bio-fuel performance in internal combustion engine and relevant costs involvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 29-44.
    14. Soudagar, Manzoore Elahi M. & Nik-Ghazali, Nik-Nazri & Kalam, M.A. & Badruddin, Irfan Anjum & Banapurmath, N.R. & Bin Ali, Mohamad Azlin & Kamangar, Sarfaraz & Cho, Haeng Muk & Akram, Naveed, 2020. "An investigation on the influence of aluminium oxide nano-additive and honge oil methyl ester on engine performance, combustion and emission characteristics," Renewable Energy, Elsevier, vol. 146(C), pages 2291-2307.
    15. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    16. Das, S. & Kashyap, D. & Kalita, P. & Kulkarni, V. & Itaya, Y., 2020. "Clean gaseous fuel application in diesel engine: A sustainable option for rural electrification in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    17. Sadeghinezhad, E. & Kazi, S.N. & Badarudin, A. & Oon, C.S. & Zubir, M.N.M. & Mehrali, Mohammad, 2013. "A comprehensive review of bio-diesel as alternative fuel for compression ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 410-424.
    18. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E. & Shahabuddin, M. & Palash, S.M. & Hazrat, M.A., 2013. "Effect of biodiesel from various feedstocks on combustion characteristics, engine durability and materials compatibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 441-455.
    19. Kale, Aneesh Vijay & Krishnasamy, Anand, 2023. "Experimental study of homogeneous charge compression ignition combustion in a light-duty diesel engine fueled with isopropanol–gasoline blends," Energy, Elsevier, vol. 264(C).
    20. Marietta Markiewicz & Łukasz Muślewski, 2019. "The Impact of Powering an Engine with Fuels from Renewable Energy Sources including its Software Modification on a Drive Unit Performance Parameters," Sustainability, MDPI, vol. 11(23), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10729-:d:644238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.