IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v108y2013icp8-23.html
   My bibliography  Save this article

Computer-aided conversion of an engine from diesel to methane

Author

Listed:
  • Donateo, Teresa
  • Tornese, Federica
  • Laforgia, Domenico

Abstract

The paper proposes an analytical methodology that uses empirical based models and CFD simulations to efficiently evaluate design alternatives in the conversion of a diesel engine to either CNG dedicated or dual fuel engines. The procedure is performed in five steps. Firstly, a database of different combustion chambers that can be obtained from the original piston is obtained. The chambers in the database differ for the shape of the bowl, the value of the compression ratio, the offset of the bowl and the size of the squish region. The second step of the procedure is the selection, from the first database, of the combustion chambers able to resist to the mechanical stresses due to the pressure and temperature distribution at full load. For each combination of suitable combustion chamber shape and engine control parameters (ignition/injection crank angle, EGR, etc.), a CFD simulation is used to evaluate the combustion performance of the engine. Then, a post-processing procedure is used to evaluate the detonation tendency and intensity of each combination. All the tools developed for the application of the method have been linked in the ModeFrontier optimization environment in order to perform the final choice of the combustion chamber.

Suggested Citation

  • Donateo, Teresa & Tornese, Federica & Laforgia, Domenico, 2013. "Computer-aided conversion of an engine from diesel to methane," Applied Energy, Elsevier, vol. 108(C), pages 8-23.
  • Handle: RePEc:eee:appene:v:108:y:2013:i:c:p:8-23
    DOI: 10.1016/j.apenergy.2013.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913001888
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.03.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fu, Geng & Zhao, Changlu & Liu, Bolan & Zhang, Fujun & Pang, Siping & Li, Yuchuan, 2012. "Investigation on the combustion characteristics of a diesel engine fueled with diesel–azides blends," Applied Energy, Elsevier, vol. 91(1), pages 98-102.
    2. Chandra, R. & Vijay, V.K. & Subbarao, P.M.V. & Khura, T.K., 2011. "Performance evaluation of a constant speed IC engine on CNG, methane enriched biogas and biogas," Applied Energy, Elsevier, vol. 88(11), pages 3969-3977.
    3. Sen, Asok K. & Wang, Jinhua & Huang, Zuohua, 2011. "Investigating the effect of hydrogen addition on cyclic variability in a natural gas spark ignition engine: Wavelet multiresolution analysis," Applied Energy, Elsevier, vol. 88(12), pages 4860-4866.
    4. Mavropoulos, G.C., 2011. "Experimental study of the interactions between long and short-term unsteady heat transfer responses on the in-cylinder and exhaust manifold diesel engine surfaces," Applied Energy, Elsevier, vol. 88(3), pages 867-881, March.
    5. Pang, Kar Mun & Ng, Hoon Kiat & Gan, Suyin, 2012. "In-cylinder diesel spray combustion simulations using parallel computation: A performance benchmarking study," Applied Energy, Elsevier, vol. 93(C), pages 466-478.
    6. Namasivayam, A.M. & Korakianitis, T. & Crookes, R.J. & Bob-Manuel, K.D.H. & Olsen, J., 2010. "Biodiesel, emulsified biodiesel and dimethyl ether as pilot fuels for natural gas fuelled engines," Applied Energy, Elsevier, vol. 87(3), pages 769-778, March.
    7. Wu, Horng-Wen & Wu, Zhan-Yi, 2013. "Using Taguchi method on combustion performance of a diesel engine with diesel/biodiesel blend and port-inducting H2," Applied Energy, Elsevier, vol. 104(C), pages 362-370.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Qiang & Ogren, Ryan M. & Kong, Song-Charng, 2016. "A comparative study of biodiesel engine performance optimization using enhanced hybrid PSO–GA and basic GA," Applied Energy, Elsevier, vol. 165(C), pages 676-684.
    2. Ouyang, Minggao & Zhang, Weilin & Wang, Enhua & Yang, Fuyuan & Li, Jianqiu & Li, Zhongyan & Yu, Ping & Ye, Xiao, 2015. "Performance analysis of a novel coaxial power-split hybrid powertrain using a CNG engine and supercapacitors," Applied Energy, Elsevier, vol. 157(C), pages 595-606.
    3. Liu, Jinlong & Dumitrescu, Cosmin E., 2018. "Flame development analysis in a diesel optical engine converted to spark ignition natural gas operation," Applied Energy, Elsevier, vol. 230(C), pages 1205-1217.
    4. Channappagoudra, Manjunath & Ramesh, K. & Manavendra, G., 2019. "Comparative study of standard engine and modified engine with different piston bowl geometries operated with B20 fuel blend," Renewable Energy, Elsevier, vol. 133(C), pages 216-232.
    5. Yaliwal, V.S. & Banapurmath, N.R. & Gireesh, N.M. & Hosmath, R.S. & Donateo, Teresa & Tewari, P.G., 2016. "Effect of nozzle and combustion chamber geometry on the performance of a diesel engine operated on dual fuel mode using renewable fuels," Renewable Energy, Elsevier, vol. 93(C), pages 483-501.
    6. K. M. V. Ravi Teja & P. Issac Prasad & K. Vijaya Kumar Reddy & Nagaraj R. Banapurmath & Muhammad A. Kalam & C. Ahamed Saleel, 2022. "Effect of Injection Parameters on the Performance of Compression Ignition Engine Powered with Jamun Seed and Cashew Nutshell B20 Biodiesel Blends," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    7. Nayak, Swarup Kumar & Chandra Mishra, Purna, 2019. "Combustion characteristics, performances and emissions of a biodiesel-producer gas dual fuel engine with varied combustor geometry," Energy, Elsevier, vol. 168(C), pages 585-600.
    8. Cao, Jiale & Li, Tie & Huang, Shuai & Chen, Run & Li, Shiyan & Kuang, Min & Yang, Rundai & Huang, Yating, 2023. "Co-optimization of miller degree and geometric compression ratio of a large-bore natural gas generator engine with novel Knock models and machine learning," Applied Energy, Elsevier, vol. 352(C).
    9. Soudagar, Manzoore Elahi M. & Mujtaba, M.A. & Safaei, Mohammad Reza & Afzal, Asif & V, Dhana Raju & Ahmed, Waqar & Banapurmath, N.R. & Hossain, Nazia & Bashir, Shahid & Badruddin, Irfan Anjum & Goodar, 2021. "Effect of Sr@ZnO nanoparticles and Ricinus communis biodiesel-diesel fuel blends on modified CRDI diesel engine characteristics," Energy, Elsevier, vol. 215(PA).
    10. Zhu, Zhenxia & Zhang, Fujun & Li, Changjiang & Wu, Taotao & Han, Kai & Lv, Jianguo & Li, Yunlong & Xiao, Xuelian, 2015. "Genetic algorithm optimization applied to the fuel supply parameters of diesel engines working at plateau," Applied Energy, Elsevier, vol. 157(C), pages 789-797.
    11. Das, S. & Kashyap, D. & Kalita, P. & Kulkarni, V. & Itaya, Y., 2020. "Clean gaseous fuel application in diesel engine: A sustainable option for rural electrification in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imran, S. & Emberson, D.R. & Diez, A. & Wen, D.S. & Crookes, R.J. & Korakianitis, T., 2014. "Natural gas fueled compression ignition engine performance and emissions maps with diesel and RME pilot fuels," Applied Energy, Elsevier, vol. 124(C), pages 354-365.
    2. Chang, Yu-Cheng & Lee, Wen-Jhy & Lin, Sheng-Lun & Wang, Lin-Chi, 2013. "Green energy: Water-containing acetone–butanol–ethanol diesel blends fueled in diesel engines," Applied Energy, Elsevier, vol. 109(C), pages 182-191.
    3. Chintala, V. & Subramanian, K.A., 2015. "Experimental investigations on effect of different compression ratios on enhancement of maximum hydrogen energy share in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 87(C), pages 448-462.
    4. Ogunkoya, Dolanimi & Li, Shuai & Rojas, Orlando J. & Fang, Tiegang, 2015. "Performance, combustion, and emissions in a diesel engine operated with fuel-in-water emulsions based on lignin," Applied Energy, Elsevier, vol. 154(C), pages 851-861.
    5. Gupta, Aditi & Kumar, Ashwani & Sharma, Satyawati & Vijay, V.K., 2013. "Comparative evaluation of raw and detoxified mahua seed cake for biogas production," Applied Energy, Elsevier, vol. 102(C), pages 1514-1521.
    6. Chintala, V. & Subramanian, K.A., 2017. "Experimental investigation of autoignition of hydrogen-air charge in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 138(C), pages 197-209.
    7. Liang, Chen & Ji, Changwei & Liu, Xiaolong, 2011. "Combustion and emissions performance of a DME-enriched spark-ignited methanol engine at idle condition," Applied Energy, Elsevier, vol. 88(11), pages 3704-3711.
    8. Sadiq Y, Ragadia & Iyer, Rajesh C., 2020. "Experimental investigations on the influence of compression ratio and piston crown geometry on the performance of biogas fuelled small spark ignition engine," Renewable Energy, Elsevier, vol. 146(C), pages 997-1009.
    9. Jung, Choongsoo & Park, Jungsoo & Song, Soonho, 2015. "Performance and NOx emissions of a biogas-fueled turbocharged internal combustion engine," Energy, Elsevier, vol. 86(C), pages 186-195.
    10. Wang, Ying & Xiao, Fan & Zhao, Yuwei & Li, Dongchang & Lei, Xiong, 2015. "Study on cycle-by-cycle variations in a diesel engine with dimethyl ether as port premixing fuel," Applied Energy, Elsevier, vol. 143(C), pages 58-70.
    11. Ji, Changwei & Wang, Shuofeng & Zhang, Bo, 2012. "Performance of a hybrid hydrogen–gasoline engine under various operating conditions," Applied Energy, Elsevier, vol. 97(C), pages 584-589.
    12. Kapoor, Rimika & Subbarao, P.M.V. & Vijay, Virendra Kumar & Shah, Goldy & Sahota, Shivali & Singh, Dhruv & Verma, Mahesh, 2017. "Factors affecting methane loss from a water scrubbing based biogas upgrading system," Applied Energy, Elsevier, vol. 208(C), pages 1379-1388.
    13. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    14. Lin, Lin & Cunshan, Zhou & Vittayapadung, Saritporn & Xiangqian, Shen & Mingdong, Dong, 2011. "Opportunities and challenges for biodiesel fuel," Applied Energy, Elsevier, vol. 88(4), pages 1020-1031, April.
    15. Ramasamy, D. & Zainal, Z.A. & Kadirgama, K. & Walker-Gitano Briggs, Horizon, 2016. "Effect of dissimilar valve lift on a bi-fuel CNG engine operation," Energy, Elsevier, vol. 112(C), pages 509-519.
    16. Jin, Tai & Wu, Yunchao & Wang, Xujiang & Luo, Kai H. & Lu, Tianfeng & Luo, Kun & Fan, Jianren, 2019. "Ignition dynamics of DME/methane-air reactive mixing layer under reactivity controlled compression ignition conditions: Effects of cool flames," Applied Energy, Elsevier, vol. 249(C), pages 343-354.
    17. Chintala, Venkateswarlu & Subramanian, K.A., 2017. "A comprehensive review on utilization of hydrogen in a compression ignition engine under dual fuel mode," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 472-491.
    18. Wenyan Chen & Qiang Cai & Yuan Zhao & Guojuan Zheng & Yuting Liang, 2014. "Toxicity Evaluation of Pig Slurry Using Luminescent Bacteria and Zebrafish," IJERPH, MDPI, vol. 11(7), pages 1-15, July.
    19. Barik, Debabrata & Murugan, S., 2014. "Investigation on combustion performance and emission characteristics of a DI (direct injection) diesel engine fueled with biogas–diesel in dual fuel mode," Energy, Elsevier, vol. 72(C), pages 760-771.
    20. Lee, Ming Kwee & Hashim, Haslenda & Lim, Jeng Shiun & Taib, Mohd Rozainee, 2019. "Spatial planning and optimisation for virtual distribution of BioCNG derived from palm oil mill effluent to meet industrial energy demand," Renewable Energy, Elsevier, vol. 141(C), pages 526-540.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:108:y:2013:i:c:p:8-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.