IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v87y2016ip2p869-883.html
   My bibliography  Save this article

Identification of critical components of wind turbines using FTA over the time

Author

Listed:
  • Márquez, Fausto Pedro García
  • Pérez, Jesús María Pinar
  • Marugán, Alberto Pliego
  • Papaelias, Mayorkinos

Abstract

Wind energy is currently the most widely implemented renewable energy source in global scale. Complex industrial multi-MW wind turbines are continuously being installed both onshore and offshore. Projects involving utility-scale wind turbines require optimisation of reliability, availability, maintainability and safety, in order to guarantee the financial viability of large scale wind energy projects, particularly offshore, in the forthcoming years. For this reason, critical wind turbine components must be identified and monitored as cost-effectively, reliably and efficiently as possible. The condition of industrial wind turbines can be qualitatively evaluated through the Fault Tree Analysis (FTA). The quantitative analysis requires high computational cost. In this paper, the Binary Decision Diagram (BDD) method is proposed for reducing this computational cost. In order to optimise the BDD a set of ranking methods of events has been considered; Level, Top-Down-Left-Right, AND, Depth First Search and Breadth-First Search. A quantitative analysis approach in order to find a general solution of a Fault Tree (FT) is presented. An illustrative case study of a FT of a wind turbine based on different research studies has been developed. Finally, this FT has been solved dynamically through the BDD approach in order to highlight the identification of the critical components of the wind turbine under different conditions, employing the following heuristic methods: Birnbaum, Criticality, Structural and Fussell-Vesely. The results provided by this methodology allow the performance of novel maintenance planning from a quantitative point of view.

Suggested Citation

  • Márquez, Fausto Pedro García & Pérez, Jesús María Pinar & Marugán, Alberto Pliego & Papaelias, Mayorkinos, 2016. "Identification of critical components of wind turbines using FTA over the time," Renewable Energy, Elsevier, vol. 87(P2), pages 869-883.
  • Handle: RePEc:eee:renene:v:87:y:2016:i:p2:p:869-883
    DOI: 10.1016/j.renene.2015.09.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115303177
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.09.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Anca D. & Michalke, Gabriele, 2007. "Fault ride-through capability of DFIG wind turbines," Renewable Energy, Elsevier, vol. 32(9), pages 1594-1610.
    2. Blanco, María Isabel, 2009. "The economics of wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1372-1382, August.
    3. Peng Guo & Nan Bai, 2011. "Wind Turbine Gearbox Condition Monitoring with AAKR and Moving Window Statistic Methods," Energies, MDPI, vol. 4(11), pages 1-17, November.
    4. Joselin Herbert, G.M. & Iniyan, S. & Sreevalsan, E. & Rajapandian, S., 2007. "A review of wind energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1117-1145, August.
    5. García, Fausto P. & Pedregal, Diego J. & Roberts, Clive, 2010. "Time series methods applied to failure prediction and detection," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 698-703.
    6. García Márquez, Fausto Pedro & Tobias, Andrew Mark & Pinar Pérez, Jesús María & Papaelias, Mayorkinos, 2012. "Condition monitoring of wind turbines: Techniques and methods," Renewable Energy, Elsevier, vol. 46(C), pages 169-178.
    7. Entezami, M. & Hillmansen, S. & Weston, P. & Papaelias, M.Ph., 2012. "Fault detection and diagnosis within a wind turbine mechanical braking system using condition monitoring," Renewable Energy, Elsevier, vol. 47(C), pages 175-182.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Boryczko & Dawid Szpak & Jakub Żywiec & Barbara Tchórzewska-Cieślak, 2022. "The Use of a Fault Tree Analysis (FTA) in the Operator Reliability Assessment of the Critical Infrastructure on the Example of Water Supply System," Energies, MDPI, vol. 15(12), pages 1-13, June.
    2. de Novaes Pires Leite, Gustavo & da Cunha, Guilherme Tenório Maciel & dos Santos Junior, José Guilhermino & Araújo, Alex Maurício & Rosas, Pedro André Carvalho & Stosic, Tatijana & Stosic, Borko & Ros, 2021. "Alternative fault detection and diagnostic using information theory quantifiers based on vibration time-waveforms from condition monitoring systems: Application to operational wind turbines," Renewable Energy, Elsevier, vol. 164(C), pages 1183-1194.
    3. Chiacchio, Ferdinando & D’Urso, Diego & Famoso, Fabio & Brusca, Sebastian & Aizpurua, Jose Ignacio & Catterson, Victoria M., 2018. "On the use of dynamic reliability for an accurate modelling of renewable power plants," Energy, Elsevier, vol. 151(C), pages 605-621.
    4. Tziavos, Nikolaos I. & Hemida, H. & Dirar, S. & Papaelias, M. & Metje, N. & Baniotopoulos, C., 2020. "Structural health monitoring of grouted connections for offshore wind turbines by means of acoustic emission: An experimental study," Renewable Energy, Elsevier, vol. 147(P1), pages 130-140.
    5. Leite, Gustavo de Novaes Pires & Araújo, Alex Maurício & Rosas, Pedro André Carvalho, 2018. "Prognostic techniques applied to maintenance of wind turbines: a concise and specific review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1917-1925.
    6. Fausto Pedro García Márquez & Alberto Pliego Marugán & Jesús María Pinar Pérez & Stuart Hillmansen & Mayorkinos Papaelias, 2017. "Optimal Dynamic Analysis of Electrical/Electronic Components in Wind Turbines," Energies, MDPI, vol. 10(8), pages 1-19, July.
    7. Wang, Jinhe & Zhang, Xiaohong & Zeng, Jianchao & Zhang, Yunzheng, 2020. "Joint external and internal opportunistic optimisation for wind turbine considering wind velocity," Renewable Energy, Elsevier, vol. 159(C), pages 380-398.
    8. Kang, Jichuan & Sun, Liping & Guedes Soares, C., 2019. "Fault Tree Analysis of floating offshore wind turbines," Renewable Energy, Elsevier, vol. 133(C), pages 1455-1467.
    9. Ferdinando Chiacchio & Fabio Famoso & Diego D’Urso & Sebastian Brusca & Jose Ignacio Aizpurua & Luca Cedola, 2018. "Dynamic Performance Evaluation of Photovoltaic Power Plant by Stochastic Hybrid Fault Tree Automaton Model," Energies, MDPI, vol. 11(2), pages 1-22, January.
    10. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    11. Laihao Ma & Xiaoxue Ma & Jingwen Zhang & Qing Yang & Kai Wei, 2021. "Identifying the Weaker Function Links in the Hazardous Chemicals Road Transportation System in China," IJERPH, MDPI, vol. 18(13), pages 1-17, July.
    12. Arcos Jiménez, Alfredo & Zhang, Long & Gómez Muñoz, Carlos Quiterio & García Márquez, Fausto Pedro, 2020. "Maintenance management based on Machine Learning and nonlinear features in wind turbines," Renewable Energy, Elsevier, vol. 146(C), pages 316-328.
    13. Yang, Wenguang & Liu, Chao & Jiang, Dongxiang, 2018. "An unsupervised spatiotemporal graphical modeling approach for wind turbine condition monitoring," Renewable Energy, Elsevier, vol. 127(C), pages 230-241.
    14. Huerta Herraiz, Álvaro & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2020. "Photovoltaic plant condition monitoring using thermal images analysis by convolutional neural network-based structure," Renewable Energy, Elsevier, vol. 153(C), pages 334-348.
    15. Alfredo Arcos Jiménez & Carlos Quiterio Gómez Muñoz & Fausto Pedro García Márquez, 2017. "Machine Learning for Wind Turbine Blades Maintenance Management," Energies, MDPI, vol. 11(1), pages 1-16, December.
    16. Yao Li & Frank PA Coolen, 2019. "Time-dependent reliability analysis of wind turbines considering load-sharing using fault tree analysis and Markov chains," Journal of Risk and Reliability, , vol. 233(6), pages 1074-1085, December.
    17. Estefania Artigao & Sofia Koukoura & Andrés Honrubia-Escribano & James Carroll & Alasdair McDonald & Emilio Gómez-Lázaro, 2018. "Current Signature and Vibration Analyses to Diagnose an In-Service Wind Turbine Drive Train," Energies, MDPI, vol. 11(4), pages 1-18, April.
    18. Pliego Marugán, Alberto & Peco Chacón, Ana María & García Márquez, Fausto Pedro, 2019. "Reliability analysis of detecting false alarms that employ neural networks: A real case study on wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    19. Jiménez, Alfredo Arcos & García Márquez, Fausto Pedro & Moraleda, Victoria Borja & Gómez Muñoz, Carlos Quiterio, 2019. "Linear and nonlinear features and machine learning for wind turbine blade ice detection and diagnosis," Renewable Energy, Elsevier, vol. 132(C), pages 1034-1048.
    20. Alberto Pliego Marugán & Fausto Pedro García Márquez & Jesús María Pinar Pérez, 2016. "Optimal Maintenance Management of Offshore Wind Farms," Energies, MDPI, vol. 9(1), pages 1-20, January.
    21. Bhardwaj, U. & Teixeira, A.P. & Soares, C. Guedes, 2019. "Reliability prediction of an offshore wind turbine gearbox," Renewable Energy, Elsevier, vol. 141(C), pages 693-706.
    22. Marugán, Alberto Pliego & Márquez, Fausto Pedro García & Perez, Jesus María Pinar & Ruiz-Hernández, Diego, 2018. "A survey of artificial neural network in wind energy systems," Applied Energy, Elsevier, vol. 228(C), pages 1822-1836.
    23. Li, Yanting & Jiang, Wenbo & Zhang, Guangyao & Shu, Lianjie, 2021. "Wind turbine fault diagnosis based on transfer learning and convolutional autoencoder with small-scale data," Renewable Energy, Elsevier, vol. 171(C), pages 103-115.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Colak, Ilhami & Fulli, Gianluca & Bayhan, Sertac & Chondrogiannis, Stamatios & Demirbas, Sevki, 2015. "Critical aspects of wind energy systems in smart grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 155-171.
    2. Mohd Zin, Abdullah Asuhaimi B. & Pesaran H.A., Mahmoud & Khairuddin, Azhar B. & Jahanshaloo, Leila & Shariati, Omid, 2013. "An overview on doubly fed induction generators′ controls and contributions to wind based electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 692-708.
    3. Kang, Jichuan & Sun, Liping & Guedes Soares, C., 2019. "Fault Tree Analysis of floating offshore wind turbines," Renewable Energy, Elsevier, vol. 133(C), pages 1455-1467.
    4. Fausto Pedro García Márquez & Alberto Pliego Marugán & Jesús María Pinar Pérez & Stuart Hillmansen & Mayorkinos Papaelias, 2017. "Optimal Dynamic Analysis of Electrical/Electronic Components in Wind Turbines," Energies, MDPI, vol. 10(8), pages 1-19, July.
    5. Pliego Marugán, Alberto & Peco Chacón, Ana María & García Márquez, Fausto Pedro, 2019. "Reliability analysis of detecting false alarms that employ neural networks: A real case study on wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    6. Habibi, Hamed & Howard, Ian & Simani, Silvio, 2019. "Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review," Renewable Energy, Elsevier, vol. 135(C), pages 877-896.
    7. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
    8. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    9. Ruiz de la Hermosa González-Carrato, Raúl & García Márquez, Fausto Pedro & Dimlaye, Vichaar, 2015. "Maintenance management of wind turbines structures via MFCs and wavelet transforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 472-482.
    10. Eissa (SIEEE), M.M., 2015. "Protection techniques with renewable resources and smart grids—A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1645-1667.
    11. Kaldellis, John K. & Zafirakis, D., 2011. "The wind energy (r)evolution: A short review of a long history," Renewable Energy, Elsevier, vol. 36(7), pages 1887-1901.
    12. Jürgen Herp & Niels L. Pedersen & Esmaeil S. Nadimi, 2019. "Assessment of Early Stopping through Statistical Health Prognostic Models for Empirical RUL Estimation in Wind Turbine Main Bearing Failure Monitoring," Energies, MDPI, vol. 13(1), pages 1-18, December.
    13. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    14. Bakir, I. & Yildirim, M. & Ursavas, E., 2021. "An integrated optimization framework for multi-component predictive analytics in wind farm operations & maintenance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    15. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    16. Bhutto, Abdul Waheed & Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2013. "Greener energy: Issues and challenges for Pakistan—wind power prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 519-538.
    17. Yang, Bin & Sun, Dongbai, 2013. "Testing, inspecting and monitoring technologies for wind turbine blades: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 515-526.
    18. Igba, Joel & Alemzadeh, Kazem & Durugbo, Christopher & Henningsen, Keld, 2015. "Performance assessment of wind turbine gearboxes using in-service data: Current approaches and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 144-159.
    19. Cambron, P. & Lepvrier, R. & Masson, C. & Tahan, A. & Pelletier, F., 2016. "Power curve monitoring using weighted moving average control charts," Renewable Energy, Elsevier, vol. 94(C), pages 126-135.
    20. Abdul Ghani Olabi & Tabbi Wilberforce & Khaled Elsaid & Enas Taha Sayed & Tareq Salameh & Mohammad Ali Abdelkareem & Ahmad Baroutaji, 2021. "A Review on Failure Modes of Wind Turbine Components," Energies, MDPI, vol. 14(17), pages 1-44, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:87:y:2016:i:p2:p:869-883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.