IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2017i1p13-d123871.html
   My bibliography  Save this article

Machine Learning for Wind Turbine Blades Maintenance Management

Author

Listed:
  • Alfredo Arcos Jiménez

    (Ingenium Research Group, Castilla-La Mancha University, 13071 Ciudad Real, Spain)

  • Carlos Quiterio Gómez Muñoz

    (Ingeniería Industrial y Aeroespacial, Universidad Europea Madrid, Villaviciosa de Odón, 28670 Madrid, Spain)

  • Fausto Pedro García Márquez

    (Ingenium Research Group, Castilla-La Mancha University, 13071 Ciudad Real, Spain)

Abstract

Delamination in Wind Turbine Blades (WTB) is a common structural problem that can generate large costs. Delamination is the separation of layers of a composite material, which produces points of stress concentration. These points suffer greater traction and compression forces in working conditions, and they can trigger cracks, and partial or total breakage of the blade. Early detection of delamination is crucial for the prevention of breakages and downtime. The main novelty presented in this paper has been to apply an approach for detecting and diagnosing the delamination WTB. The approach is based on signal processing of guided waves, and multiclass pattern recognition using machine learning. Delamination was induced in the WTB to check the accuracy of the approach. The signal is denoised by wavelet transform. The autoregressive Yule–Walker model is employed for feature extraction, and Akaike’s information criterion method for feature selection. The classifiers are quadratic discriminant analysis, k-nearest neighbors, decision trees, and neural network multilayer perceptron. The confusion matrix is employed to evaluate the classification, especially the receiver operating characteristic analysis by: recall, specificity, precision, and F -score.

Suggested Citation

  • Alfredo Arcos Jiménez & Carlos Quiterio Gómez Muñoz & Fausto Pedro García Márquez, 2017. "Machine Learning for Wind Turbine Blades Maintenance Management," Energies, MDPI, vol. 11(1), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:11:y:2017:i:1:p:13-:d:123871
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/13/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/13/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Márquez, Fausto Pedro García & Pérez, Jesús María Pinar & Marugán, Alberto Pliego & Papaelias, Mayorkinos, 2016. "Identification of critical components of wind turbines using FTA over the time," Renewable Energy, Elsevier, vol. 87(P2), pages 869-883.
    2. Hirotugu Akaike, 1969. "Fitting autoregressive models for prediction," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 21(1), pages 243-247, December.
    3. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    4. Fausto Pedro García Márquez & Alberto Pliego Marugán & Jesús María Pinar Pérez & Stuart Hillmansen & Mayorkinos Papaelias, 2017. "Optimal Dynamic Analysis of Electrical/Electronic Components in Wind Turbines," Energies, MDPI, vol. 10(8), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marugán, Alberto Pliego & Márquez, Fausto Pedro García & Perez, Jesus María Pinar & Ruiz-Hernández, Diego, 2018. "A survey of artificial neural network in wind energy systems," Applied Energy, Elsevier, vol. 228(C), pages 1822-1836.
    2. Huerta Herraiz, Álvaro & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2020. "Photovoltaic plant condition monitoring using thermal images analysis by convolutional neural network-based structure," Renewable Energy, Elsevier, vol. 153(C), pages 334-348.
    3. Jiménez, Alfredo Arcos & García Márquez, Fausto Pedro & Moraleda, Victoria Borja & Gómez Muñoz, Carlos Quiterio, 2019. "Linear and nonlinear features and machine learning for wind turbine blade ice detection and diagnosis," Renewable Energy, Elsevier, vol. 132(C), pages 1034-1048.
    4. Campos, Eduardo Lima & Cysne, Rubens Penha, 2017. "A time-varying fiscal reaction function for Brazil," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 795, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    5. Rodrigo Hakim das Neves, 2020. "Bitcoin pricing: impact of attractiveness variables," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-18, December.
    6. Asghar, Zahid & Abid, Irum, 2007. "Performance of lag length selection criteria in three different situations," MPRA Paper 40042, University Library of Munich, Germany.
    7. Kathryn M. Dominguez, 1991. "Do Exchange Auctions Work? An Examination of the Bolivian Experience," NBER Working Papers 3683, National Bureau of Economic Research, Inc.
    8. Segovia Ramírez, Isaac & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2022. "A novel approach to optimize the positioning and measurement parameters in photovoltaic aerial inspections," Renewable Energy, Elsevier, vol. 187(C), pages 371-389.
    9. Bin Liu & Weifeng Chen & Bo Li & Xiuping Liu, 2022. "Neural Subspace Learning for Surface Defect Detection," Mathematics, MDPI, vol. 10(22), pages 1-16, November.
    10. Jacint Balaguer & Manuel Cantavella-Jorda, 2004. "Structural change in exports and economic growth: cointegration and causality analysis for Spain (1961-2000)," Applied Economics, Taylor & Francis Journals, vol. 36(5), pages 473-477.
    11. Muhammad Farooq Arby & Amjad Ali, 2017. "Threshold Inflation in Pakistan," SBP Research Bulletin, State Bank of Pakistan, Research Department, vol. 13, pages 1-19.
    12. Ramona Dumitriu & Razvan Stefanescu, 2015. "The Relationship Between Romanian Exports And Economic Growth After The Adhesion To European Union," Risk in Contemporary Economy, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, pages 17-26.
    13. Laihao Ma & Xiaoxue Ma & Jingwen Zhang & Qing Yang & Kai Wei, 2021. "Identifying the Weaker Function Links in the Hazardous Chemicals Road Transportation System in China," IJERPH, MDPI, vol. 18(13), pages 1-17, July.
    14. David F. Hendry & Hans-Martin Krolzig, 2005. "The Properties of Automatic "GETS" Modelling," Economic Journal, Royal Economic Society, vol. 115(502), pages C32-C61, 03.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2017:i:1:p:13-:d:123871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.