IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v151y2018icp605-621.html
   My bibliography  Save this article

On the use of dynamic reliability for an accurate modelling of renewable power plants

Author

Listed:
  • Chiacchio, Ferdinando
  • D’Urso, Diego
  • Famoso, Fabio
  • Brusca, Sebastian
  • Aizpurua, Jose Ignacio
  • Catterson, Victoria M.

Abstract

Renewable energies are a key element of the modern sustainable development. They play a key role in contributing to the reduction of the impact of fossil sources and to the energy supply in remote areas where the electrical grid cannot be reached.

Suggested Citation

  • Chiacchio, Ferdinando & D’Urso, Diego & Famoso, Fabio & Brusca, Sebastian & Aizpurua, Jose Ignacio & Catterson, Victoria M., 2018. "On the use of dynamic reliability for an accurate modelling of renewable power plants," Energy, Elsevier, vol. 151(C), pages 605-621.
  • Handle: RePEc:eee:energy:v:151:y:2018:i:c:p:605-621
    DOI: 10.1016/j.energy.2018.03.101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218305103
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.03.101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sen, Rohit & Bhattacharyya, Subhes C., 2014. "Off-grid electricity generation with renewable energy technologies in India: An application of HOMER," Renewable Energy, Elsevier, vol. 62(C), pages 388-398.
    2. Guo, Zhenhai & Zhao, Weigang & Lu, Haiyan & Wang, Jianzhou, 2012. "Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model," Renewable Energy, Elsevier, vol. 37(1), pages 241-249.
    3. E. B. Iversen & J. M. Morales & J. K. Møller & H. Madsen, 2014. "Probabilistic forecasts of solar irradiance using stochastic differential equations," Environmetrics, John Wiley & Sons, Ltd., vol. 25(3), pages 152-164, May.
    4. Manno, G. & Chiacchio, F. & Compagno, L. & D'Urso, D. & Trapani, N., 2014. "Conception of Repairable Dynamic Fault Trees and resolution by the use of RAATSS, a Matlab® toolbox based on the ATS formalism," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 250-262.
    5. Enrico Zio, 2013. "The Monte Carlo Simulation Method for System Reliability and Risk Analysis," Springer Series in Reliability Engineering, Springer, edition 127, number 978-1-4471-4588-2, February.
    6. Li, Yan-Fu & Zio, Enrico, 2012. "A multi-state model for the reliability assessment of a distributed generation system via universal generating function," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 28-36.
    7. Hiremath, R.B. & Shikha, S. & Ravindranath, N.H., 2007. "Decentralized energy planning; modeling and application--a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 729-752, June.
    8. Borges, Carmen Lucia Tancredo, 2012. "An overview of reliability models and methods for distribution systems with renewable energy distributed generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4008-4015.
    9. Enrico Zio, 2013. "System Reliability and Risk Analysis by Monte Carlo Simulation," Springer Series in Reliability Engineering, in: The Monte Carlo Simulation Method for System Reliability and Risk Analysis, edition 127, chapter 0, pages 59-81, Springer.
    10. Osório, G.J. & Lujano-Rojas, J.M. & Matias, J.C.O. & Catalão, J.P.S., 2015. "A probabilistic approach to solve the economic dispatch problem with intermittent renewable energy sources," Energy, Elsevier, vol. 82(C), pages 949-959.
    11. Chiacchio, F. & D’Urso, D. & Manno, G. & Compagno, L., 2016. "Stochastic hybrid automaton model of a multi-state system with aging: Reliability assessment and design consequences," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 1-13.
    12. Márquez, Fausto Pedro García & Pérez, Jesús María Pinar & Marugán, Alberto Pliego & Papaelias, Mayorkinos, 2016. "Identification of critical components of wind turbines using FTA over the time," Renewable Energy, Elsevier, vol. 87(P2), pages 869-883.
    13. Zhang, Peng & Li, Wenyuan & Li, Sherwin & Wang, Yang & Xiao, Weidong, 2013. "Reliability assessment of photovoltaic power systems: Review of current status and future perspectives," Applied Energy, Elsevier, vol. 104(C), pages 822-833.
    14. Shamshad, A. & Bawadi, M.A. & Wan Hussin, W.M.A. & Majid, T.A. & Sanusi, S.A.M., 2005. "First and second order Markov chain models for synthetic generation of wind speed time series," Energy, Elsevier, vol. 30(5), pages 693-708.
    15. Skoplaki, E. & Palyvos, J.A., 2009. "Operating temperature of photovoltaic modules: A survey of pertinent correlations," Renewable Energy, Elsevier, vol. 34(1), pages 23-29.
    16. Ellabban, Omar & Abu-Rub, Haitham & Blaabjerg, Frede, 2014. "Renewable energy resources: Current status, future prospects and their enabling technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 748-764.
    17. Nfaoui, H. & Essiarab, H. & Sayigh, A.A.M., 2004. "A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco," Renewable Energy, Elsevier, vol. 29(8), pages 1407-1418.
    18. Mellit, A. & Sağlam, S. & Kalogirou, S.A., 2013. "Artificial neural network-based model for estimating the produced power of a photovoltaic module," Renewable Energy, Elsevier, vol. 60(C), pages 71-78.
    19. Fleten, S.-E. & Maribu, K.M. & Wangensteen, I., 2007. "Optimal investment strategies in decentralized renewable power generation under uncertainty," Energy, Elsevier, vol. 32(5), pages 803-815.
    20. Zini, Gabriele & Mangeant, Christophe & Merten, Jens, 2011. "Reliability of large-scale grid-connected photovoltaic systems," Renewable Energy, Elsevier, vol. 36(9), pages 2334-2340.
    21. Enrico Zio, 2013. "Monte Carlo Simulation: The Method," Springer Series in Reliability Engineering, in: The Monte Carlo Simulation Method for System Reliability and Risk Analysis, edition 127, chapter 0, pages 19-58, Springer.
    22. Kusiak, Andrew & Li, Wenyan, 2011. "The prediction and diagnosis of wind turbine faults," Renewable Energy, Elsevier, vol. 36(1), pages 16-23.
    23. Babykina, Génia & Brînzei, Nicolae & Aubry, Jean-François & Deleuze, Gilles, 2016. "Modeling and simulation of a controlled steam generator in the context of dynamic reliability using a Stochastic Hybrid Automaton," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 115-136.
    24. Iqbal, M. & Azam, M. & Naeem, M. & Khwaja, A.S. & Anpalagan, A., 2014. "Optimization classification, algorithms and tools for renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 640-654.
    25. Abdullah, M.A. & Agalgaonkar, A.P. & Muttaqi, K.M., 2014. "Assessment of energy supply and continuity of service in distribution network with renewable distributed generation," Applied Energy, Elsevier, vol. 113(C), pages 1015-1026.
    26. Enrico Zio, 2013. "System Reliability and Risk Analysis," Springer Series in Reliability Engineering, in: The Monte Carlo Simulation Method for System Reliability and Risk Analysis, edition 127, chapter 0, pages 7-17, Springer.
    27. Santos-Alamillos, F.J. & Pozo-Vázquez, D. & Ruiz-Arias, J.A. & Lara-Fanego, V. & Tovar-Pescador, J., 2014. "A methodology for evaluating the spatial variability of wind energy resources: Application to assess the potential contribution of wind energy to baseload power," Renewable Energy, Elsevier, vol. 69(C), pages 147-156.
    28. Kishor, Nand & Saini, R.P. & Singh, S.P., 2007. "A review on hydropower plant models and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 776-796, June.
    29. Colli, Alessandra, 2015. "Failure mode and effect analysis for photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 804-809.
    30. Chiacchio, F. & Compagno, L. & D'Urso, D. & Manno, G. & Trapani, N., 2011. "Dynamic fault trees resolution: A conscious trade-off between analytical and simulative approaches," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1515-1526.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ferdinando Chiacchio & Fabio Famoso & Diego D’Urso & Luca Cedola, 2019. "Performance and Economic Assessment of a Grid-Connected Photovoltaic Power Plant with a Storage System: A Comparison between the North and the South of Italy," Energies, MDPI, vol. 12(12), pages 1-25, June.
    2. Firouzi, Mohsen & Samimi, Abouzar & Salami, Abolfazl, 2022. "Reliability evaluation of a composite power system in the presence of renewable generations," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    3. Julia Schulz & Daniel Leinmüller & Adam Misik & Michael F. Zaeh, 2021. "Renewable On-Site Power Generation for Manufacturing Companies—Technologies, Modeling, and Dimensioning," Sustainability, MDPI, vol. 13(7), pages 1-27, April.
    4. Han Zhang & Hanjie Yuan & Gengfeng Li & Yanling Lin, 2018. "Quantitative Resilience Assessment under a Tri-Stage Framework for Power Systems," Energies, MDPI, vol. 11(6), pages 1-23, June.
    5. Priyanka Majumder & Mrinmoy Majumder & Apu Kumar Saha & Soumitra Nath, 2020. "Selection of features for analysis of reliability of performance in hydropower plants: a multi-criteria decision making approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 3239-3265, April.
    6. Dong, Zhe & Li, Bowen & Li, Junyi & Huang, Xiaojin & Zhang, Zuoyi, 2022. "Online reliability assessment of energy systems based on a high-order extended-state-observer with application to nuclear reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    7. Chiacchio, Ferdinando & Iacono, Alessandra & Compagno, Lucio & D'Urso, Diego, 2020. "A general framework for dependability modelling coupling discrete-event and time-driven simulation," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    8. Ahmadi, Gholamreza & Toghraie, Davood & Akbari, Omidali, 2019. "Energy, exergy and environmental (3E) analysis of the existing CHP system in a petrochemical plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 234-242.
    9. Famoso, Fabio & Brusca, Sebastian & D'Urso, Diego & Galvagno, Antonio & Chiacchio, Ferdinando, 2020. "A novel hybrid model for the estimation of energy conversion in a wind farm combining wake effects and stochastic dependability," Applied Energy, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ferdinando Chiacchio & Fabio Famoso & Diego D’Urso & Sebastian Brusca & Jose Ignacio Aizpurua & Luca Cedola, 2018. "Dynamic Performance Evaluation of Photovoltaic Power Plant by Stochastic Hybrid Fault Tree Automaton Model," Energies, MDPI, vol. 11(2), pages 1-22, January.
    2. Mo, Hua-Dong & Li, Yan-Fu & Zio, Enrico, 2016. "A system-of-systems framework for the reliability analysis of distributed generation systems accounting for the impact of degraded communication networks," Applied Energy, Elsevier, vol. 183(C), pages 805-822.
    3. Aizpurua, J.I. & Catterson, V.M. & Papadopoulos, Y. & Chiacchio, F. & D'Urso, D., 2017. "Supporting group maintenance through prognostics-enhanced dynamic dependability prediction," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 171-188.
    4. Mena, Rodrigo & Hennebel, Martin & Li, Yan-Fu & Zio, Enrico, 2016. "A multi-objective optimization framework for risk-controlled integration of renewable generation into electric power systems," Energy, Elsevier, vol. 106(C), pages 712-727.
    5. Chiacchio, F. & D’Urso, D. & Manno, G. & Compagno, L., 2016. "Stochastic hybrid automaton model of a multi-state system with aging: Reliability assessment and design consequences," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 1-13.
    6. Gascard, Eric & Simeu-Abazi, Zineb, 2018. "Quantitative Analysis of Dynamic Fault Trees by means of Monte Carlo Simulations: Event-Driven Simulation Approach," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 487-504.
    7. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    8. Kuznetsova, Elizaveta & Li, Yan-Fu & Ruiz, Carlos & Zio, Enrico, 2014. "An integrated framework of agent-based modelling and robust optimization for microgrid energy management," Applied Energy, Elsevier, vol. 129(C), pages 70-88.
    9. Guowang Meng & Hongle Li & Bo Wu & Guangyang Liu & Huazheng Ye & Yiming Zuo, 2023. "Prediction of the Tunnel Collapse Probability Using SVR-Based Monte Carlo Simulation: A Case Study," Sustainability, MDPI, vol. 15(9), pages 1-21, April.
    10. Michael Saidani & Alissa Kendall & Bernard Yannou & Yann Leroy & François Cluzel, 2019. "Closing the loop on platinum from catalytic converters: Contributions from material flow analysis and circularity indicators," Post-Print hal-02094798, HAL.
    11. Michele Compare & Francesco Di Maio & Enrico Zio & Fausto Carlevaro & Sara Mattafirri, 2016. "Improving scheduled maintenance by missing data reconstruction: A double-loop Monte Carlo approach," Journal of Risk and Reliability, , vol. 230(5), pages 502-511, October.
    12. Salomon, Julian & Winnewisser, Niklas & Wei, Pengfei & Broggi, Matteo & Beer, Michael, 2021. "Efficient reliability analysis of complex systems in consideration of imprecision," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    13. Di Maio, Francesco & Pettorossi, Chiara & Zio, Enrico, 2023. "Entropy-driven Monte Carlo simulation method for approximating the survival signature of complex infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    14. Wang, Fan & Li, Heng, 2018. "System reliability under prescribed marginals and correlations: Are we correct about the effect of correlations?," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 94-104.
    15. Tito G. Amaral & Vitor Fernão Pires & Armando Cordeiro & Daniel Foito & João F. Martins & Julia Yamnenko & Tetyana Tereschenko & Liudmyla Laikova & Ihor Fedin, 2023. "Incipient Fault Diagnosis of a Grid-Connected T-Type Multilevel Inverter Using Multilayer Perceptron and Walsh Transform," Energies, MDPI, vol. 16(6), pages 1-18, March.
    16. Zhang, Hanxiao & Sun, Muxia & Li, Yan-Fu, 2022. "Reliability–redundancy allocation problem in multi-state flow network: Minimal cut-based approximation scheme," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    17. Tosoni, E. & Salo, A. & Govaerts, J. & Zio, E., 2019. "Comprehensiveness of scenarios in the safety assessment of nuclear waste repositories," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 561-573.
    18. Penttinen, Jussi-Pekka & Niemi, Arto & Gutleber, Johannes & Koskinen, Kari T. & Coatanéa, Eric & Laitinen, Jouko, 2019. "An open modelling approach for availability and reliability of systems," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 387-399.
    19. Rocco, Claudio M. & Moronta, José & Ramirez-Marquez, José E. & Barker, Kash, 2017. "Effects of multi-state links in network community detection," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 46-56.
    20. Compare, Michele & Bellani, Luca & Zio, Enrico, 2019. "Optimal allocation of prognostics and health management capabilities to improve the reliability of a power transmission network," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 164-180.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:151:y:2018:i:c:p:605-621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.