IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4416-d841130.html
   My bibliography  Save this article

The Use of a Fault Tree Analysis (FTA) in the Operator Reliability Assessment of the Critical Infrastructure on the Example of Water Supply System

Author

Listed:
  • Krzysztof Boryczko

    (Department of Water Supply and Sewerage Systems, Faculty of Civil, Environmental Engineering and Architecture, Rzeszow University of Technology, Al. Powstancow Warszawy 6, 35-959 Rzeszow, Poland)

  • Dawid Szpak

    (Department of Water Supply and Sewerage Systems, Faculty of Civil, Environmental Engineering and Architecture, Rzeszow University of Technology, Al. Powstancow Warszawy 6, 35-959 Rzeszow, Poland)

  • Jakub Żywiec

    (Department of Water Supply and Sewerage Systems, Faculty of Civil, Environmental Engineering and Architecture, Rzeszow University of Technology, Al. Powstancow Warszawy 6, 35-959 Rzeszow, Poland)

  • Barbara Tchórzewska-Cieślak

    (Department of Water Supply and Sewerage Systems, Faculty of Civil, Environmental Engineering and Architecture, Rzeszow University of Technology, Al. Powstancow Warszawy 6, 35-959 Rzeszow, Poland)

Abstract

Background: Specialist literature indicates a large share of the human factor among the causes of failure of technical systems at the level of 70 to 90%, which depends on the sector studied. The collective water supply system is an anthropotechnical system, i.e., it is a complex connection between man and the technical system resulting from the deliberate influence of man on the technical system. Methods: The work presents an assessment of operator reliability of a selected water treatment process based on the fault tree analysis (FTA). Elementary events are determined by the operator’s error probability. Results: A failure tree was prepared for the peak event of the filter station failure, resulting from an operator’s error during the filter washing procedure. The probability of a peak event occurring is 0.0580. Conclusions: The developed fault tree allows for the identification of elementary events leading to an emergency event. The operator fulfills its task of maintaining the continuity of water treatment.

Suggested Citation

  • Krzysztof Boryczko & Dawid Szpak & Jakub Żywiec & Barbara Tchórzewska-Cieślak, 2022. "The Use of a Fault Tree Analysis (FTA) in the Operator Reliability Assessment of the Critical Infrastructure on the Example of Water Supply System," Energies, MDPI, vol. 15(12), pages 1-13, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4416-:d:841130
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4416/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4416/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Márquez, Fausto Pedro García & Pérez, Jesús María Pinar & Marugán, Alberto Pliego & Papaelias, Mayorkinos, 2016. "Identification of critical components of wind turbines using FTA over the time," Renewable Energy, Elsevier, vol. 87(P2), pages 869-883.
    2. Przemysław Kowalik & Magdalena Rzemieniak, 2021. "Binary Linear Programming as a Tool of Cost Optimization for a Water Supply Operator," Sustainability, MDPI, vol. 13(6), pages 1-15, March.
    3. Kariuki, S.G. & Löwe, K., 2007. "Integrating human factors into process hazard analysis," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1764-1773.
    4. Barbara Tchórzewska-Cieślak & Katarzyna Pietrucha-Urbanik & Mohamed Eid, 2021. "Functional Safety Concept to Support Hazard Assessment and Risk Management in Water-Supply Systems," Energies, MDPI, vol. 14(4), pages 1-13, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beata Piotrowska & Daniel Słyś, 2023. "Analysis of the Life Cycle Cost of a Heat Recovery System from Greywater Using a Vertical “Tube-in-Tube” Heat Exchanger: Case Study of Poland," Resources, MDPI, vol. 12(9), pages 1-17, August.
    2. Sabina Kordana-Obuch & Mariusz Starzec, 2022. "Horizontal Shower Heat Exchanger as an Effective Domestic Hot Water Heating Alternative," Energies, MDPI, vol. 15(13), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zarei, Esmaeil & Khan, Faisal & Abbassi, Rouzbeh, 2021. "Importance of human reliability in process operation: A critical analysis," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    2. Laihao Ma & Xiaoxue Ma & Jingwen Zhang & Qing Yang & Kai Wei, 2021. "Identifying the Weaker Function Links in the Hazardous Chemicals Road Transportation System in China," IJERPH, MDPI, vol. 18(13), pages 1-17, July.
    3. Chiacchio, Ferdinando & D’Urso, Diego & Famoso, Fabio & Brusca, Sebastian & Aizpurua, Jose Ignacio & Catterson, Victoria M., 2018. "On the use of dynamic reliability for an accurate modelling of renewable power plants," Energy, Elsevier, vol. 151(C), pages 605-621.
    4. Mariusz Pyra, 2023. "Simulation of the Progress of the Decarbonization Process in Poland’s Road Transport Sector," Energies, MDPI, vol. 16(12), pages 1-21, June.
    5. Alfredo Arcos Jiménez & Carlos Quiterio Gómez Muñoz & Fausto Pedro García Márquez, 2017. "Machine Learning for Wind Turbine Blades Maintenance Management," Energies, MDPI, vol. 11(1), pages 1-16, December.
    6. Dina Guglielmi & Alessio Paolucci & Valerio Cozzani & Marco Giovanni Mariani & Luca Pietrantoni & Federico Fraboni, 2022. "Integrating Human Barriers in Human Reliability Analysis: A New Model for the Energy Sector," IJERPH, MDPI, vol. 19(5), pages 1-17, February.
    7. Junqiao Zhang & Xuebo Chen & Qiubai Sun, 2019. "A Safety Performance Assessment Framework for the Petroleum Industry’s Sustainable Development Based on FAHP-FCE and Human Factors," Sustainability, MDPI, vol. 11(13), pages 1-20, June.
    8. Huerta Herraiz, Álvaro & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2020. "Photovoltaic plant condition monitoring using thermal images analysis by convolutional neural network-based structure," Renewable Energy, Elsevier, vol. 153(C), pages 334-348.
    9. Ferdinando Chiacchio & Fabio Famoso & Diego D’Urso & Sebastian Brusca & Jose Ignacio Aizpurua & Luca Cedola, 2018. "Dynamic Performance Evaluation of Photovoltaic Power Plant by Stochastic Hybrid Fault Tree Automaton Model," Energies, MDPI, vol. 11(2), pages 1-22, January.
    10. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    11. Jiménez, Alfredo Arcos & García Márquez, Fausto Pedro & Moraleda, Victoria Borja & Gómez Muñoz, Carlos Quiterio, 2019. "Linear and nonlinear features and machine learning for wind turbine blade ice detection and diagnosis," Renewable Energy, Elsevier, vol. 132(C), pages 1034-1048.
    12. Tziavos, Nikolaos I. & Hemida, H. & Dirar, S. & Papaelias, M. & Metje, N. & Baniotopoulos, C., 2020. "Structural health monitoring of grouted connections for offshore wind turbines by means of acoustic emission: An experimental study," Renewable Energy, Elsevier, vol. 147(P1), pages 130-140.
    13. Wang, Jinhe & Zhang, Xiaohong & Zeng, Jianchao & Zhang, Yunzheng, 2020. "Joint external and internal opportunistic optimisation for wind turbine considering wind velocity," Renewable Energy, Elsevier, vol. 159(C), pages 380-398.
    14. Palmer, C. & Chung, P.W.H., 2009. "An automated system for batch hazard and operability studies," Reliability Engineering and System Safety, Elsevier, vol. 94(6), pages 1095-1106.
    15. Marugán, Alberto Pliego & Márquez, Fausto Pedro García & Perez, Jesus María Pinar & Ruiz-Hernández, Diego, 2018. "A survey of artificial neural network in wind energy systems," Applied Energy, Elsevier, vol. 228(C), pages 1822-1836.
    16. Kang, Jichuan & Sun, Liping & Guedes Soares, C., 2019. "Fault Tree Analysis of floating offshore wind turbines," Renewable Energy, Elsevier, vol. 133(C), pages 1455-1467.
    17. Park, Jinkyun & Jung, Wondea, 2015. "Comparing cultural profiles of MCR operators with those of non-MCR operators working in domestic Nuclear Power Plants," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 146-156.
    18. Flavia Fechete & Anișor Nedelcu, 2022. "Multi-Objective Optimization of the Organization’s Performance for Sustainable Development," Sustainability, MDPI, vol. 14(15), pages 1-20, July.
    19. Selvik, Jon T. & Bellamy, Linda J., 2020. "Addressing human error when collecting failure cause information in the oil and gas industry: A review of ISO 14224:2016," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    20. He, Ye & Kuai, Nian-Sheng & Deng, Li-Min & He, Xiong-Yuan, 2021. "A method for assessing Human Error Probability through physiological and psychological factors tests based on CREAM and its applications," Reliability Engineering and System Safety, Elsevier, vol. 215(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4416-:d:841130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.