IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v83y2015icp1250-1259.html
   My bibliography  Save this article

Performance prediction on a resorption cogeneration cycle for power and refrigeration with energy storage

Author

Listed:
  • Jiang, L.
  • Wang, L.W.
  • Zhang, X.F.
  • Liu, C.Z.
  • Wang, R.Z.

Abstract

Energy conversion technologies, especially for power generation and refrigeration, driven by the low temperature heat source are gathering the momentum recently. This paper presents a novel cogeneration cycle combining power and refrigeration with energy storage function. MnCl2–CaCl2–NH3 is selected as the working pair. Phase change materials of “50 wt% NaNO3 + 50 wt% KNO3” and “65 mol% capric acid + 35 mol% lauric acid” are chosen for heat and cold storage, respectively. Heat and mass transfer property of composite adsorbents are investigated, and isentropic efficiency of scroll expander is tested by compressed air. Based on experimental results, a cogeneration system with power of 300 W maximum and cooling power of 2 kW is designed and analyzed. Analysis shows that total energy efficiency of cogeneration system increases from 0.316 to 0.376 and energy efficiency decreases from 0.402 to 0.391 when evaporation temperature increases from −10 to 20 °C. Cold releasing process is able to last 91 min with cold storage function.

Suggested Citation

  • Jiang, L. & Wang, L.W. & Zhang, X.F. & Liu, C.Z. & Wang, R.Z., 2015. "Performance prediction on a resorption cogeneration cycle for power and refrigeration with energy storage," Renewable Energy, Elsevier, vol. 83(C), pages 1250-1259.
  • Handle: RePEc:eee:renene:v:83:y:2015:i:c:p:1250-1259
    DOI: 10.1016/j.renene.2015.06.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115300513
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.06.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Long & Wang, LiWei & Wang, RuZhu & Gao, Peng & Song, FenPing, 2014. "Investigation on cascading cogeneration system of ORC (Organic Rankine Cycle) and CaCl2/BaCl2 two-stage adsorption freezer," Energy, Elsevier, vol. 71(C), pages 377-387.
    2. Goetz, V. & Spinner, B. & Lepinasse, E., 1997. "A solid-gas thermochemical cooling system using BaCl2 and NiCl2," Energy, Elsevier, vol. 22(1), pages 49-58.
    3. Vélez, Fredy & Segovia, José J. & Martín, M. Carmen & Antolín, Gregorio & Chejne, Farid & Quijano, Ana, 2012. "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4175-4189.
    4. Kenisarin, Murat & Mahkamov, Khamid, 2007. "Solar energy storage using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 1913-1965, December.
    5. Quoilin, Sylvain & Lemort, Vincent & Lebrun, Jean, 2010. "Experimental study and modeling of an Organic Rankine Cycle using scroll expander," Applied Energy, Elsevier, vol. 87(4), pages 1260-1268, April.
    6. Wang, Liwei & Ziegler, Felix & Roskilly, Anthony Paul & Wang, Ruzhu & Wang, Yaodong, 2013. "A resorption cycle for the cogeneration of electricity and refrigeration," Applied Energy, Elsevier, vol. 106(C), pages 56-64.
    7. Bao, Huashan & Wang, Yaodong & Charalambous, Constantinos & Lu, Zisheng & Wang, Liwei & Wang, Ruzhu & Roskilly, Anthony Paul, 2014. "Chemisorption cooling and electric power cogeneration system driven by low grade heat," Energy, Elsevier, vol. 72(C), pages 590-598.
    8. Wang, L.W. & Bao, H.S. & Wang, R.Z., 2009. "A comparison of the performances of adsorption and resorption refrigeration systems powered by the low grade heat," Renewable Energy, Elsevier, vol. 34(11), pages 2373-2379.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Yiji & Roskilly, Anthony Paul & Tang, Ke & Wang, Yaodong & Jiang, Long & Yuan, Ye & Wang, Liwei, 2017. "Investigation and performance study of a dual-source chemisorption power generation cycle using scroll expander," Applied Energy, Elsevier, vol. 204(C), pages 979-993.
    2. Jiang, L. & Wang, R.Q. & Tao, X. & Roskilly, A.P., 2020. "A hybrid resorption-compression heat transformer for energy storage and upgrade with a large temperature lift," Applied Energy, Elsevier, vol. 280(C).
    3. Manente, Giovanni & Ding, Yulong & Sciacovelli, Adriano, 2021. "Organic Rankine cycles combined with thermochemical sorption heat transformers to enhance the power output from waste heat," Applied Energy, Elsevier, vol. 304(C).
    4. Elsayed, Ahmed & Elsayed, Eman & AL-Dadah, Raya & Mahmoud, Saad & Elshaer, Amr & Kaialy, Waseem, 2017. "Thermal energy storage using metal–organic framework materials," Applied Energy, Elsevier, vol. 186(P3), pages 509-519.
    5. Al-Mousawi, Fadhel Noraldeen & Al-Dadah, Raya & Mahmoud, Saad, 2016. "Low grade heat driven adsorption system for cooling and power generation with small-scale radial inflow turbine," Applied Energy, Elsevier, vol. 183(C), pages 1302-1316.
    6. Jiang, L. & Lu, Y.J. & Roskilly, A.P. & Wang, R.Z. & Wang, L.W. & Tang, K., 2018. "Exploration of ammonia resorption cycle for power generation by using novel composite sorbent," Applied Energy, Elsevier, vol. 215(C), pages 457-467.
    7. Kang, Jing & Wang, Shengwei & Yan, Chengchu, 2019. "A new distributed energy system configuration for cooling dominated districts and the performance assessment based on real site measurements," Renewable Energy, Elsevier, vol. 131(C), pages 390-403.
    8. Jiang, L. & Roskilly, A.P. & Wang, R.Z. & Wang, L.W., 2018. "Analysis on innovative resorption cycle for power and refrigeration cogeneration," Applied Energy, Elsevier, vol. 218(C), pages 10-21.
    9. Jiang, L. & Lu, H.T. & Wang, L.W. & Gao, P. & Zhu, F.Q. & Wang, R.Z. & Roskilly, A.P., 2017. "Investigation on a small-scale pumpless Organic Rankine Cycle (ORC) system driven by the low temperature heat source," Applied Energy, Elsevier, vol. 195(C), pages 478-486.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, L. & Wang, L.W. & Liu, C.Z. & Wang, R.Z., 2016. "Experimental study on a resorption system for power and refrigeration cogeneration," Energy, Elsevier, vol. 97(C), pages 182-190.
    2. Al-Mousawi, Fadhel Noraldeen & Al-Dadah, Raya & Mahmoud, Saad, 2016. "Low grade heat driven adsorption system for cooling and power generation with small-scale radial inflow turbine," Applied Energy, Elsevier, vol. 183(C), pages 1302-1316.
    3. Zhu, F.Q. & Jiang, L. & Wang, L.W. & Wang, R.Z., 2016. "Experimental investigation on a MnCl2CaCl2NH3 resorption system for heat and refrigeration cogeneration," Applied Energy, Elsevier, vol. 181(C), pages 29-37.
    4. Bao, Huashan & Ma, Zhiwei & Roskilly, Anthony Paul, 2017. "Chemisorption power generation driven by low grade heat – Theoretical analysis and comparison with pumpless ORC," Applied Energy, Elsevier, vol. 186(P3), pages 282-290.
    5. Jiang, L. & Lu, Y.J. & Roskilly, A.P. & Wang, R.Z. & Wang, L.W. & Tang, K., 2018. "Exploration of ammonia resorption cycle for power generation by using novel composite sorbent," Applied Energy, Elsevier, vol. 215(C), pages 457-467.
    6. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    7. Zhang, Cheng & Liu, Chao & Xu, Xiaoxiao & Li, Qibin & Wang, Shukun, 2019. "Energetic, exergetic, economic and environmental (4E) analysis and multi-factor evaluation method of low GWP fluids in trans-critical organic Rankine cycles," Energy, Elsevier, vol. 168(C), pages 332-345.
    8. Lu, Yiji & Roskilly, Anthony Paul & Tang, Ke & Wang, Yaodong & Jiang, Long & Yuan, Ye & Wang, Liwei, 2017. "Investigation and performance study of a dual-source chemisorption power generation cycle using scroll expander," Applied Energy, Elsevier, vol. 204(C), pages 979-993.
    9. Lu, Yiji & Wang, Yaodong & Bao, Huashan & Yuan, Ye & Wang, Liwei & Roskilly, Anthony Paul, 2015. "Analysis of an optimal resorption cogeneration using mass and heat recovery processes," Applied Energy, Elsevier, vol. 160(C), pages 892-901.
    10. Yang, Xufei & Xu, Jinliang & Miao, Zheng & Zou, Jinghuang & Yu, Chao, 2015. "Operation of an organic Rankine cycle dependent on pumping flow rates and expander torques," Energy, Elsevier, vol. 90(P1), pages 864-878.
    11. Cho, Soo-Yong & Cho, Chong-Hyun & Ahn, Kook-Young & Lee, Young Duk, 2014. "A study of the optimal operating conditions in the organic Rankine cycle using a turbo-expander for fluctuations of the available thermal energy," Energy, Elsevier, vol. 64(C), pages 900-911.
    12. Freeman, James & Hellgardt, Klaus & Markides, Christos N., 2015. "An assessment of solar-powered organic Rankine cycle systems for combined heating and power in UK domestic applications," Applied Energy, Elsevier, vol. 138(C), pages 605-620.
    13. Godefroy, Alexis & Perier-Muzet, Maxime & Mazet, Nathalie, 2020. "Novel hybrid thermochemical cycles for low-grade heat storage and autothermal power generation: A thermodynamic study," Applied Energy, Elsevier, vol. 270(C).
    14. Wang, L.W. & Jiang, L. & Gao, J. & Gao, P. & Wang, R.Z., 2017. "Analysis of resorption working pairs for air conditioners of electric vehicles," Applied Energy, Elsevier, vol. 207(C), pages 594-603.
    15. Lei, Biao & Wang, Wei & Wu, Yu-Ting & Ma, Chong-Fang & Wang, Jing-Fu & Zhang, Lei & Li, Chuang & Zhao, Ying-Kun & Zhi, Rui-Ping, 2016. "Development and experimental study on a single screw expander integrated into an Organic Rankine Cycle," Energy, Elsevier, vol. 116(P1), pages 43-52.
    16. Zhao, Yanan & Luo, Zuoqing & Long, Rui & Liu, Zhichun & Liu, Wei, 2020. "Performance evaluations of an adsorption-based power and cooling cogeneration system under different operative conditions and working fluids," Energy, Elsevier, vol. 204(C).
    17. Wang, Liwei & Ziegler, Felix & Roskilly, Anthony Paul & Wang, Ruzhu & Wang, Yaodong, 2013. "A resorption cycle for the cogeneration of electricity and refrigeration," Applied Energy, Elsevier, vol. 106(C), pages 56-64.
    18. Jiang, L. & Roskilly, A.P. & Wang, R.Z. & Wang, L.W., 2018. "Analysis on innovative resorption cycle for power and refrigeration cogeneration," Applied Energy, Elsevier, vol. 218(C), pages 10-21.
    19. Ma, Zhiwei & Bao, Huashan & Roskilly, Anthony Paul, 2017. "Dynamic modelling and experimental validation of scroll expander for small scale power generation system," Applied Energy, Elsevier, vol. 186(P3), pages 262-281.
    20. Manente, Giovanni & Ding, Yulong & Sciacovelli, Adriano, 2021. "Organic Rankine cycles combined with thermochemical sorption heat transformers to enhance the power output from waste heat," Applied Energy, Elsevier, vol. 304(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:83:y:2015:i:c:p:1250-1259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.