IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v186y2017ip3p282-290.html
   My bibliography  Save this article

Chemisorption power generation driven by low grade heat – Theoretical analysis and comparison with pumpless ORC

Author

Listed:
  • Bao, Huashan
  • Ma, Zhiwei
  • Roskilly, Anthony Paul

Abstract

Sorption cycles have been extensively developed for waste heat recovery to deliver cooling, heating, and electricity. Chemisorption cycles using metallic salts as sorbents and ammonia as working fluid have been explored in this work for the maximum potential of pure power generation. In order to get better understanding and more insights, resorption power generation cycle (RPGC) has been theoretically investigated and compared with pumpless organic Rankine cycle (PORC). The PORC operates without a liquid pump in conventional ORC and shares the similar configuration with RPGC. Three different organic fluids (pentane, R123 and R245fa) used in PORCs and four different reactant salts (manganese chloride, strontium chloride, barium chloride and sodium bromide) used in RPGCs have been analysed and evaluated in terms of the power generation capacity, thermal efficiency and energy density under the conditions of heat source temperature from 60°C to 180°C and heat sink temperature at 30°C. The PORCs have higher thermal efficiency of work output for most cases in the studied scenarios, while RPGCs are evidently superior on energy density, at least as twice large as that of the PORCs studied. RPGC and PORC both have intermittent and dynamic operation, and the former one has the potential to have multiple energy productions or perform as energy storage.

Suggested Citation

  • Bao, Huashan & Ma, Zhiwei & Roskilly, Anthony Paul, 2017. "Chemisorption power generation driven by low grade heat – Theoretical analysis and comparison with pumpless ORC," Applied Energy, Elsevier, vol. 186(P3), pages 282-290.
  • Handle: RePEc:eee:appene:v:186:y:2017:i:p3:p:282-290
    DOI: 10.1016/j.apenergy.2016.01.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916300022
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.01.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bao, Huashan & Wang, Yaodong & Roskilly, Anthony Paul, 2014. "Modelling of a chemisorption refrigeration and power cogeneration system," Applied Energy, Elsevier, vol. 119(C), pages 351-362.
    2. Wang, Liwei & Ziegler, Felix & Roskilly, Anthony Paul & Wang, Ruzhu & Wang, Yaodong, 2013. "A resorption cycle for the cogeneration of electricity and refrigeration," Applied Energy, Elsevier, vol. 106(C), pages 56-64.
    3. Gao, P. & Wang, L.W. & Wang, R.Z. & Jiang, L. & Zhou, Z.S., 2015. "Experimental investigation on a small pumpless ORC (organic rankine cycle) system driven by the low temperature heat source," Energy, Elsevier, vol. 91(C), pages 324-333.
    4. Bao, H.S. & Wang, R.Z. & Oliveira, R.G. & Li, T.X., 2012. "Resorption system for cold storage and long-distance refrigeration," Applied Energy, Elsevier, vol. 93(C), pages 479-487.
    5. Thu, Kyaw & Kim, Young-Deuk & Shahzad, Muhammad Wakil & Saththasivam, Jayaprakash & Ng, Kim Choon, 2015. "Performance investigation of an advanced multi-effect adsorption desalination (MEAD) cycle," Applied Energy, Elsevier, vol. 159(C), pages 469-477.
    6. Johannes, Kévyn & Kuznik, Frédéric & Hubert, Jean-Luc & Durier, Francois & Obrecht, Christian, 2015. "Design and characterisation of a high powered energy dense zeolite thermal energy storage system for buildings," Applied Energy, Elsevier, vol. 159(C), pages 80-86.
    7. Ge, T.S. & Dai, Y.J. & Li, Y. & Wang, R.Z., 2012. "Simulation investigation on solar powered desiccant coated heat exchanger cooling system," Applied Energy, Elsevier, vol. 93(C), pages 532-540.
    8. Bao, Huashan & Wang, Yaodong & Charalambous, Constantinos & Lu, Zisheng & Wang, Liwei & Wang, Ruzhu & Roskilly, Anthony Paul, 2014. "Chemisorption cooling and electric power cogeneration system driven by low grade heat," Energy, Elsevier, vol. 72(C), pages 590-598.
    9. Choudhury, Biplab & Saha, Bidyut Baran & Chatterjee, Pradip K. & Sarkar, Jyoti Prakas, 2013. "An overview of developments in adsorption refrigeration systems towards a sustainable way of cooling," Applied Energy, Elsevier, vol. 104(C), pages 554-567.
    10. Srikhirin, Pongsid & Aphornratana, Satha & Chungpaibulpatana, Supachart, 2001. "A review of absorption refrigeration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 343-372, December.
    11. Wang, L.W. & Bao, H.S. & Wang, R.Z., 2009. "A comparison of the performances of adsorption and resorption refrigeration systems powered by the low grade heat," Renewable Energy, Elsevier, vol. 34(11), pages 2373-2379.
    12. Yamada, Noboru & Watanabe, Masataka & Hoshi, Akira, 2013. "Experiment on pumpless Rankine-type cycle with scroll expander," Energy, Elsevier, vol. 49(C), pages 137-145.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Zhang, Jian & Zhang, Wujie & Song, Gege, 2021. "Introducing machine learning and hybrid algorithm for prediction and optimization of multistage centrifugal pump in an ORC system," Energy, Elsevier, vol. 222(C).
    2. Xin Wang & Yong-qiang Feng & Tzu-Chen Hung & Zhi-xia He & Chih-Hung Lin & Muhammad Sultan, 2020. "Investigating the System Behaviors of a 10 kW Organic Rankine Cycle (ORC) Prototype Using Plunger Pump and Centrifugal Pump," Energies, MDPI, vol. 13(5), pages 1-18, March.
    3. Bao, Huashan & Ma, Zhiwei & Roskilly, Anthony Paul, 2017. "An optimised chemisorption cycle for power generation using low grade heat," Applied Energy, Elsevier, vol. 186(P3), pages 251-261.
    4. Godefroy, Alexis & Perier-Muzet, Maxime & Mazet, Nathalie, 2020. "Novel hybrid thermochemical cycles for low-grade heat storage and autothermal power generation: A thermodynamic study," Applied Energy, Elsevier, vol. 270(C).
    5. Jiang, L. & Lu, H.T. & Wang, L.W. & Gao, P. & Zhu, F.Q. & Wang, R.Z. & Roskilly, A.P., 2017. "Investigation on a small-scale pumpless Organic Rankine Cycle (ORC) system driven by the low temperature heat source," Applied Energy, Elsevier, vol. 195(C), pages 478-486.
    6. Manente, Giovanni & Ding, Yulong & Sciacovelli, Adriano, 2021. "Organic Rankine cycles combined with thermochemical sorption heat transformers to enhance the power output from waste heat," Applied Energy, Elsevier, vol. 304(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, L. & Wang, L.W. & Liu, C.Z. & Wang, R.Z., 2016. "Experimental study on a resorption system for power and refrigeration cogeneration," Energy, Elsevier, vol. 97(C), pages 182-190.
    2. Jiang, L. & Roskilly, A.P. & Wang, R.Z. & Wang, L.W., 2018. "Analysis on innovative resorption cycle for power and refrigeration cogeneration," Applied Energy, Elsevier, vol. 218(C), pages 10-21.
    3. Jiang, L. & Lu, Y.J. & Roskilly, A.P. & Wang, R.Z. & Wang, L.W. & Tang, K., 2018. "Exploration of ammonia resorption cycle for power generation by using novel composite sorbent," Applied Energy, Elsevier, vol. 215(C), pages 457-467.
    4. Jiang, L. & Lu, H.T. & Wang, L.W. & Gao, P. & Zhu, F.Q. & Wang, R.Z. & Roskilly, A.P., 2017. "Investigation on a small-scale pumpless Organic Rankine Cycle (ORC) system driven by the low temperature heat source," Applied Energy, Elsevier, vol. 195(C), pages 478-486.
    5. Al-Mousawi, Fadhel Noraldeen & Al-Dadah, Raya & Mahmoud, Saad, 2016. "Low grade heat driven adsorption system for cooling and power generation with small-scale radial inflow turbine," Applied Energy, Elsevier, vol. 183(C), pages 1302-1316.
    6. Kojok, Farah & Fardoun, Farouk & Younes, Rafic & Outbib, Rachid, 2016. "Hybrid cooling systems: A review and an optimized selection scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 57-80.
    7. Siddiqui, M.U. & Said, S.A.M., 2015. "A review of solar powered absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 93-115.
    8. Godefroy, Alexis & Perier-Muzet, Maxime & Mazet, Nathalie, 2020. "Novel hybrid thermochemical cycles for low-grade heat storage and autothermal power generation: A thermodynamic study," Applied Energy, Elsevier, vol. 270(C).
    9. Wang, L.W. & Jiang, L. & Gao, J. & Gao, P. & Wang, R.Z., 2017. "Analysis of resorption working pairs for air conditioners of electric vehicles," Applied Energy, Elsevier, vol. 207(C), pages 594-603.
    10. Jiang, L. & Wang, L.W. & Zhang, X.F. & Liu, C.Z. & Wang, R.Z., 2015. "Performance prediction on a resorption cogeneration cycle for power and refrigeration with energy storage," Renewable Energy, Elsevier, vol. 83(C), pages 1250-1259.
    11. Wang, Liwei & Ziegler, Felix & Roskilly, Anthony Paul & Wang, Ruzhu & Wang, Yaodong, 2013. "A resorption cycle for the cogeneration of electricity and refrigeration," Applied Energy, Elsevier, vol. 106(C), pages 56-64.
    12. Ullah, K.R. & Saidur, R. & Ping, H.W. & Akikur, R.K. & Shuvo, N.H., 2013. "A review of solar thermal refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 499-513.
    13. Manente, Giovanni & Ding, Yulong & Sciacovelli, Adriano, 2021. "Organic Rankine cycles combined with thermochemical sorption heat transformers to enhance the power output from waste heat," Applied Energy, Elsevier, vol. 304(C).
    14. Zhu, F.Q. & Jiang, L. & Wang, L.W. & Wang, R.Z., 2016. "Experimental investigation on a MnCl2CaCl2NH3 resorption system for heat and refrigeration cogeneration," Applied Energy, Elsevier, vol. 181(C), pages 29-37.
    15. Bao, Huashan & Ma, Zhiwei & Roskilly, Anthony Paul, 2016. "Integrated chemisorption cycles for ultra-low grade heat recovery and thermo-electric energy storage and exploitation," Applied Energy, Elsevier, vol. 164(C), pages 228-236.
    16. Scapino, Luca & Zondag, Herbert A. & Van Bael, Johan & Diriken, Jan & Rindt, Camilo C.M., 2017. "Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale," Applied Energy, Elsevier, vol. 190(C), pages 920-948.
    17. Jiang, L. & Wang, R.Z. & Wang, L.W. & Liu, J.Y. & Gao, P. & Zhu, F.Q. & Roskilly, A.P., 2017. "Performance analysis on a novel compact two-stage sorption refrigerator driven by low temperature heat source," Energy, Elsevier, vol. 135(C), pages 476-485.
    18. Lu, Yiji & Roskilly, Anthony Paul & Tang, Ke & Wang, Yaodong & Jiang, Long & Yuan, Ye & Wang, Liwei, 2017. "Investigation and performance study of a dual-source chemisorption power generation cycle using scroll expander," Applied Energy, Elsevier, vol. 204(C), pages 979-993.
    19. Aydin, Devrim & Casey, Sean P. & Riffat, Saffa, 2015. "The latest advancements on thermochemical heat storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 356-367.
    20. Wang, Z.X. & Li, H.Y. & Zhang, X.F. & Wang, L.W. & Du, S. & Fang, C., 2020. "Performance analysis on a novel micro-scale combined cooling, heating and power (CCHP) system for domestic utilization driven by biomass energy," Renewable Energy, Elsevier, vol. 156(C), pages 1215-1232.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:186:y:2017:i:p3:p:282-290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.