IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v186y2017ip3p262-281.html
   My bibliography  Save this article

Dynamic modelling and experimental validation of scroll expander for small scale power generation system

Author

Listed:
  • Ma, Zhiwei
  • Bao, Huashan
  • Roskilly, Anthony Paul

Abstract

This work presents a detailed and generic dynamic modelling and simulation method of scroll expander for small scale power generation system. The geometric models of the scroll were built step by step, including the scroll involute, scroll dimensions, chamber areas and volumes, the scroll profile modifications and so on. The valve model, internal leakage model, motion equation, heat transfer equation and energy balance equation were combined with the geometric models to complete the scroll expander modelling. A mathematic model of a direct current generator or an experimentally determined correlation of generated power against rotational speed of the used generator was integrated to the expander model as the power output unit. To enhance the adaptability of the current model, an overall dynamic friction coefficient of the scroll expander and the generator was innovatively proposed and introduced as one of the key parameters in the present study. The accurate value of this coefficient should be experimentally determined for a specific expander – generator system; with the knowledge of such a parameter, the mechanical friction loss can be accurately and easily calculated in the simulation study. The present modelling and simulation method have been validated by several sets of experimental results based on different scroll expanders studied by different researchers, and the corresponding overall dynamic friction coefficient was found in the order of magnitude of 10−3Nms.

Suggested Citation

  • Ma, Zhiwei & Bao, Huashan & Roskilly, Anthony Paul, 2017. "Dynamic modelling and experimental validation of scroll expander for small scale power generation system," Applied Energy, Elsevier, vol. 186(P3), pages 262-281.
  • Handle: RePEc:eee:appene:v:186:y:2017:i:p3:p:262-281
    DOI: 10.1016/j.apenergy.2016.08.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916311126
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.08.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Quoilin, Sylvain & Lemort, Vincent & Lebrun, Jean, 2010. "Experimental study and modeling of an Organic Rankine Cycle using scroll expander," Applied Energy, Elsevier, vol. 87(4), pages 1260-1268, April.
    2. Bracco, Roberto & Clemente, Stefano & Micheli, Diego & Reini, Mauro, 2013. "Experimental tests and modelization of a domestic-scale ORC (Organic Rankine Cycle)," Energy, Elsevier, vol. 58(C), pages 107-116.
    3. Declaye, Sébastien & Quoilin, Sylvain & Guillaume, Ludovic & Lemort, Vincent, 2013. "Experimental study on an open-drive scroll expander integrated into an ORC (Organic Rankine Cycle) system with R245fa as working fluid," Energy, Elsevier, vol. 55(C), pages 173-183.
    4. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    5. Galloni, E. & Fontana, G. & Staccone, S., 2015. "Design and experimental analysis of a mini ORC (organic Rankine cycle) power plant based on R245fa working fluid," Energy, Elsevier, vol. 90(P1), pages 768-775.
    6. Bao, Huashan & Wang, Yaodong & Charalambous, Constantinos & Lu, Zisheng & Wang, Liwei & Wang, Ruzhu & Roskilly, Anthony Paul, 2014. "Chemisorption cooling and electric power cogeneration system driven by low grade heat," Energy, Elsevier, vol. 72(C), pages 590-598.
    7. Song, Panpan & Wei, Mingshan & Liu, Zhen & Zhao, Ben, 2015. "Effects of suction port arrangements on a scroll expander for a small scale ORC system based on CFD approach," Applied Energy, Elsevier, vol. 150(C), pages 274-285.
    8. Jiang, L. & Wang, L.W. & Liu, C.Z. & Wang, R.Z., 2016. "Experimental study on a resorption system for power and refrigeration cogeneration," Energy, Elsevier, vol. 97(C), pages 182-190.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leszczynski, J.S. & Grybos, D., 2019. "Compensation for the complexity and over-scaling in industrial pneumatic systems by the accumulation and reuse of exhaust air," Applied Energy, Elsevier, vol. 239(C), pages 1130-1141.
    2. Ying Zhang & Li Zhao & Shuai Deng & Ming Li & Yali Liu & Qiongfen Yu & Mengxing Li, 2022. "Novel Off-Design Operation Maps Showing Functionality Limitations of Organic Rankine Cycle Validated by Experiments," Energies, MDPI, vol. 15(21), pages 1-19, November.
    3. Kutlu, Cagri & Erdinc, Mehmet Tahir & Li, Jing & Su, Yuehong & Pei, Gang & Gao, Guangtao & Riffat, Saffa, 2020. "Evaluate the validity of the empirical correlations of clearance and friction coefficients to improve a scroll expander semi-empirical model," Energy, Elsevier, vol. 202(C).
    4. Mendoza, Luis Carlos & Lemofouet, Sylvain & Schiffmann, Jürg, 2017. "Testing and modelling of a novel oil-free co-rotating scroll machine with water injection," Applied Energy, Elsevier, vol. 185(P1), pages 201-213.
    5. Yin, Xiong & Wen, Kai & Huang, Weihe & Luo, Yinwei & Ding, Yi & Gong, Jing & Gao, Jianfeng & Hong, Bingyuan, 2023. "A high-accuracy online transient simulation framework of natural gas pipeline network by integrating physics-based and data-driven methods," Applied Energy, Elsevier, vol. 333(C).
    6. Juan Fang & Yonghong Xu & Hongguang Zhang & Zhi Yang & Jifang Wan & Zhengguang Liu, 2023. "Experimental Research on the Output Performance of Scroll Compressor for Micro Scale Compressed Air Energy Storage System," Sustainability, MDPI, vol. 15(21), pages 1-18, November.
    7. Giuffrida, Antonio, 2017. "Improving the semi-empirical modelling of a single-screw expander for small organic Rankine cycles," Applied Energy, Elsevier, vol. 193(C), pages 356-368.
    8. Leszczynski, J.S. & Grybos, D., 2020. "Sensitivity analysis of Double Transmission Double Expansion (DTDE) systems for assessment of the environmental impact of recovering energy waste in exhaust air from compressed air systems," Applied Energy, Elsevier, vol. 278(C).
    9. Oh, Jinwoo & Jeong, Hoyoung & Kim, Joonbyum & Lee, Hoseong, 2020. "Numerical and experimental investigation on thermal-hydraulic characteristics of a scroll expander for organic Rankine cycle," Applied Energy, Elsevier, vol. 278(C).
    10. Ziviani, Davide & James, Nelson A. & Accorsi, Felipe A. & Braun, James E. & Groll, Eckhard A., 2018. "Experimental and numerical analyses of a 5 kWe oil-free open-drive scroll expander for small-scale organic Rankine cycle (ORC) applications," Applied Energy, Elsevier, vol. 230(C), pages 1140-1156.
    11. Jiang, L. & Lu, H.T. & Wang, L.W. & Gao, P. & Zhu, F.Q. & Wang, R.Z. & Roskilly, A.P., 2017. "Investigation on a small-scale pumpless Organic Rankine Cycle (ORC) system driven by the low temperature heat source," Applied Energy, Elsevier, vol. 195(C), pages 478-486.
    12. Song, Panpan & Wei, Mingshan & Zhang, Yangjun & Sun, Liwei & Emhardt, Simon & Zhuge, Weilin, 2018. "The impact of a bilateral symmetric discharge structure on the performance of a scroll expander for ORC power generation system," Energy, Elsevier, vol. 158(C), pages 458-470.
    13. Kyle Grimaldi & Ahmad Najjaran & Zhiwei Ma & Huashan Bao & Tony Roskilly, 2023. "Dynamic Modelling and Experimental Validation of a Pneumatic Radial Piston Motor," Energies, MDPI, vol. 16(4), pages 1-18, February.
    14. Jai Pyo Sung & Joon Hong Boo & Eui Guk Jung, 2020. "Transient Thermodynamic Modeling of a Scroll Compressor Using R22 Refrigerant," Energies, MDPI, vol. 13(15), pages 1-21, July.
    15. Ettore Fadiga & Nicola Casari & Alessio Suman & Michele Pinelli, 2020. "Structured Mesh Generation and Numerical Analysis of a Scroll Expander in an Open-Source Environment," Energies, MDPI, vol. 13(3), pages 1-13, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imran, Muhammad & Usman, Muhammad & Park, Byung-Sik & Lee, Dong-Hyun, 2016. "Volumetric expanders for low grade heat and waste heat recovery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1090-1109.
    2. Landelle, Arnaud & Tauveron, Nicolas & Haberschill, Philippe & Revellin, Rémi & Colasson, Stéphane, 2017. "Organic Rankine cycle design and performance comparison based on experimental database," Applied Energy, Elsevier, vol. 204(C), pages 1172-1187.
    3. Yamada, Noboru & Tominaga, Yoshihito & Yoshida, Takanori, 2014. "Demonstration of 10-Wp micro organic Rankine cycle generator for low-grade heat recovery," Energy, Elsevier, vol. 78(C), pages 806-813.
    4. Song, Panpan & Wei, Mingshan & Liu, Zhen & Zhao, Ben, 2015. "Effects of suction port arrangements on a scroll expander for a small scale ORC system based on CFD approach," Applied Energy, Elsevier, vol. 150(C), pages 274-285.
    5. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    6. Giuffrida, Antonio, 2017. "Improving the semi-empirical modelling of a single-screw expander for small organic Rankine cycles," Applied Energy, Elsevier, vol. 193(C), pages 356-368.
    7. Li, Yung-Ming & Hung, Tzu-Chen & Wu, Chia-Jung & Su, Ting-Ying & Xi, Huan & Wang, Chi-Chuan, 2021. "Experimental investigation of 3-kW organic Rankine cycle (ORC) system subject to heat source conditions: A new appraisal for assessment," Energy, Elsevier, vol. 217(C).
    8. Ziviani, Davide & Beyene, Asfaw & Venturini, Mauro, 2014. "Advances and challenges in ORC systems modeling for low grade thermal energy recovery," Applied Energy, Elsevier, vol. 121(C), pages 79-95.
    9. Kang, Seok Hun, 2016. "Design and preliminary tests of ORC (organic Rankine cycle) with two-stage radial turbine," Energy, Elsevier, vol. 96(C), pages 142-154.
    10. Campana, Claudio & Cioccolanti, Luca & Renzi, Massimiliano & Caresana, Flavio, 2019. "Experimental analysis of a small-scale scroll expander for low-temperature waste heat recovery in Organic Rankine Cycle," Energy, Elsevier, vol. 187(C).
    11. Tang, Hao & Wu, Huagen & Wang, Xiaolin & Xing, Ziwen, 2015. "Performance study of a twin-screw expander used in a geothermal organic Rankine cycle power generator," Energy, Elsevier, vol. 90(P1), pages 631-642.
    12. Ayachi, Fadhel & Ksayer, Elias Boulawz & Neveu, Pierre & Zoughaib, Assaad, 2016. "Experimental investigation and modeling of a hermetic scroll expander," Applied Energy, Elsevier, vol. 181(C), pages 256-267.
    13. Sung, Taehong & Yun, Eunkoo & Kim, Hyun Dong & Yoon, Sang Youl & Choi, Bum Seog & Kim, Kuisoon & Kim, Jangmok & Jung, Yang Beom & Kim, Kyung Chun, 2016. "Performance characteristics of a 200-kW organic Rankine cycle system in a steel processing plant," Applied Energy, Elsevier, vol. 183(C), pages 623-635.
    14. Feng, Yong-qiang & Hung, Tzu-Chen & Su, Ting-Ying & Wang, Shuang & Wang, Qian & Yang, Shih-Cheng & Lin, Jaw-Ren & Lin, Chih-Hung, 2017. "Experimental investigation of a R245fa-based organic Rankine cycle adapting two operation strategies: Stand alone and grid connect," Energy, Elsevier, vol. 141(C), pages 1239-1253.
    15. Ibarra, Mercedes & Rovira, Antonio & Alarcón-Padilla, Diego-César & Blanco, Julián, 2014. "Performance of a 5kWe Organic Rankine Cycle at part-load operation," Applied Energy, Elsevier, vol. 120(C), pages 147-158.
    16. Qiu, K. & Entchev, E., 2022. "A micro-CHP system with organic Rankine cycle using R1223zd(E) and n-Pentane as working fluids," Energy, Elsevier, vol. 239(PA).
    17. Jiang, L. & Lu, H.T. & Wang, L.W. & Gao, P. & Zhu, F.Q. & Wang, R.Z. & Roskilly, A.P., 2017. "Investigation on a small-scale pumpless Organic Rankine Cycle (ORC) system driven by the low temperature heat source," Applied Energy, Elsevier, vol. 195(C), pages 478-486.
    18. Liu, Chao & Wang, Shukun & Zhang, Cheng & Li, Qibin & Xu, Xiaoxiao & Huo, Erguang, 2019. "Experimental study of micro-scale organic Rankine cycle system based on scroll expander," Energy, Elsevier, vol. 188(C).
    19. Qiu, K. & Entchev, E., 2020. "Development of an organic Rankine cycle-based micro combined heat and power system for residential applications," Applied Energy, Elsevier, vol. 275(C).
    20. Li, Jing & Gao, Guangtao & Li, Pengcheng & Pei, Gang & Huang, Hulin & Su, Yuehong & Ji, Jie, 2018. "Experimental study of organic Rankine cycle in the presence of non-condensable gases," Energy, Elsevier, vol. 142(C), pages 739-753.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:186:y:2017:i:p3:p:262-281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.