IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v215y2018icp457-467.html
   My bibliography  Save this article

Exploration of ammonia resorption cycle for power generation by using novel composite sorbent

Author

Listed:
  • Jiang, L.
  • Lu, Y.J.
  • Roskilly, A.P.
  • Wang, R.Z.
  • Wang, L.W.
  • Tang, K.

Abstract

Expanded natural graphite and carbon coated nickel are selected as the additives in the development of novel composite sorbent. Improved thermo-physical properties of composite strontium chloride result in a faster sorption reaction rate than that without using carbon coated metal. A case study of ammonia-based resorption power generation cycle with two identical reactors is analyzed in terms of sorption characteristics of composite sorbents. Power could be generated in both half cycles, which greatly enhances working versatility and thermal efficiency. It is indicated that additive of carbon coated nickel has a positive influence on performance of resorption power generation cycles. Energy and exergy efficiency of basic resorption cycle range from 0.072 to 0.116 and from 0.402 to 0.737, respectively. Basis resorption cycle for power generation is also compared with improved resorption cycle by using different composite sorbents. Increment between improved and basic resorption cycle by using the sorbent without carbon coated nickel is larger than that using that with carbon coated nickel. Energy density by using novel composite sorbent is improved by up to 20% based on mass and volume of sorption reactor. Through reheating process, performance of basic resorption cycle is further improved by 3–5 times.

Suggested Citation

  • Jiang, L. & Lu, Y.J. & Roskilly, A.P. & Wang, R.Z. & Wang, L.W. & Tang, K., 2018. "Exploration of ammonia resorption cycle for power generation by using novel composite sorbent," Applied Energy, Elsevier, vol. 215(C), pages 457-467.
  • Handle: RePEc:eee:appene:v:215:y:2018:i:c:p:457-467
    DOI: 10.1016/j.apenergy.2018.02.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918301594
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.02.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, L. & Wang, L.W. & Zhang, X.F. & Liu, C.Z. & Wang, R.Z., 2015. "Performance prediction on a resorption cogeneration cycle for power and refrigeration with energy storage," Renewable Energy, Elsevier, vol. 83(C), pages 1250-1259.
    2. Jiang, Long & Wang, LiWei & Wang, RuZhu & Gao, Peng & Song, FenPing, 2014. "Investigation on cascading cogeneration system of ORC (Organic Rankine Cycle) and CaCl2/BaCl2 two-stage adsorption freezer," Energy, Elsevier, vol. 71(C), pages 377-387.
    3. Wang, Enhua & Yu, Zhibin, 2016. "A numerical analysis of a composition-adjustable Kalina cycle power plant for power generation from low-temperature geothermal sources," Applied Energy, Elsevier, vol. 180(C), pages 834-848.
    4. Scapino, Luca & Zondag, Herbert A. & Van Bael, Johan & Diriken, Jan & Rindt, Camilo C.M., 2017. "Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale," Applied Energy, Elsevier, vol. 190(C), pages 920-948.
    5. Lu, Yiji & Roskilly, Anthony Paul & Tang, Ke & Wang, Yaodong & Jiang, Long & Yuan, Ye & Wang, Liwei, 2017. "Investigation and performance study of a dual-source chemisorption power generation cycle using scroll expander," Applied Energy, Elsevier, vol. 204(C), pages 979-993.
    6. Jiang, L. & Roskilly, A.P. & Wang, R.Z. & Wang, L.W. & Lu, Y.J., 2017. "Analysis on innovative modular sorption and resorption thermal cell for cold and heat cogeneration," Applied Energy, Elsevier, vol. 204(C), pages 767-779.
    7. Zhu, F.Q. & Jiang, L. & Wang, L.W. & Wang, R.Z., 2016. "Experimental investigation on a MnCl2CaCl2NH3 resorption system for heat and refrigeration cogeneration," Applied Energy, Elsevier, vol. 181(C), pages 29-37.
    8. Zhao, Ruikai & Deng, Shuai & Liu, Yinan & Zhao, Qing & He, Junnan & Zhao, Li, 2017. "Carbon pump: Fundamental theory and applications," Energy, Elsevier, vol. 119(C), pages 1131-1143.
    9. Choudhury, Biplab & Saha, Bidyut Baran & Chatterjee, Pradip K. & Sarkar, Jyoti Prakas, 2013. "An overview of developments in adsorption refrigeration systems towards a sustainable way of cooling," Applied Energy, Elsevier, vol. 104(C), pages 554-567.
    10. Jiang, L. & Wang, L.W. & Liu, C.Z. & Wang, R.Z., 2016. "Experimental study on a resorption system for power and refrigeration cogeneration," Energy, Elsevier, vol. 97(C), pages 182-190.
    11. Jiang, Long & Gao, Jiao & Wang, Liwei & Wang, Ruzhu & Lu, Yiji & Roskilly, Anthony Paul, 2017. "Investigation on performance of multi-salt composite sorbents for multilevel sorption thermal energy storage," Applied Energy, Elsevier, vol. 190(C), pages 1029-1038.
    12. Jagirdar, Mrinal & Lee, Poh Seng, 2018. "Mathematical modeling and performance evaluation of a desiccant coated fin-tube heat exchanger," Applied Energy, Elsevier, vol. 212(C), pages 401-415.
    13. Bao, Huashan & Wang, Yaodong & Roskilly, Anthony Paul, 2014. "Modelling of a chemisorption refrigeration and power cogeneration system," Applied Energy, Elsevier, vol. 119(C), pages 351-362.
    14. Bao, Huashan & Ma, Zhiwei & Roskilly, Anthony Paul, 2017. "An optimised chemisorption cycle for power generation using low grade heat," Applied Energy, Elsevier, vol. 186(P3), pages 251-261.
    15. Wang, Liwei & Ziegler, Felix & Roskilly, Anthony Paul & Wang, Ruzhu & Wang, Yaodong, 2013. "A resorption cycle for the cogeneration of electricity and refrigeration," Applied Energy, Elsevier, vol. 106(C), pages 56-64.
    16. Jiang, L. & Wang, R.Z. & Wang, L.W. & Liu, J.Y. & Gao, P. & Zhu, F.Q. & Roskilly, A.P., 2017. "Performance analysis on a novel compact two-stage sorption refrigerator driven by low temperature heat source," Energy, Elsevier, vol. 135(C), pages 476-485.
    17. Bao, Huashan & Wang, Yaodong & Charalambous, Constantinos & Lu, Zisheng & Wang, Liwei & Wang, Ruzhu & Roskilly, Anthony Paul, 2014. "Chemisorption cooling and electric power cogeneration system driven by low grade heat," Energy, Elsevier, vol. 72(C), pages 590-598.
    18. L. Jiang & L.W. Wang & A.P. Roskilly & R.Z. Wang, 2013. "Design and performance analysis of a resorption cogeneration system," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 8(suppl_1), pages 85-91, May.
    19. Al-Mousawi, Fadhel Noraldeen & Al-Dadah, Raya & Mahmoud, Saad, 2016. "Low grade heat driven adsorption system for cooling and power generation with small-scale radial inflow turbine," Applied Energy, Elsevier, vol. 183(C), pages 1302-1316.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Godefroy, Alexis & Perier-Muzet, Maxime & Mazet, Nathalie, 2020. "Novel hybrid thermochemical cycles for low-grade heat storage and autothermal power generation: A thermodynamic study," Applied Energy, Elsevier, vol. 270(C).
    2. Manente, Giovanni & Ding, Yulong & Sciacovelli, Adriano, 2021. "Organic Rankine cycles combined with thermochemical sorption heat transformers to enhance the power output from waste heat," Applied Energy, Elsevier, vol. 304(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, L. & Roskilly, A.P. & Wang, R.Z. & Wang, L.W., 2018. "Analysis on innovative resorption cycle for power and refrigeration cogeneration," Applied Energy, Elsevier, vol. 218(C), pages 10-21.
    2. Al-Mousawi, Fadhel Noraldeen & Al-Dadah, Raya & Mahmoud, Saad, 2016. "Low grade heat driven adsorption system for cooling and power generation with small-scale radial inflow turbine," Applied Energy, Elsevier, vol. 183(C), pages 1302-1316.
    3. Manente, Giovanni & Ding, Yulong & Sciacovelli, Adriano, 2021. "Organic Rankine cycles combined with thermochemical sorption heat transformers to enhance the power output from waste heat," Applied Energy, Elsevier, vol. 304(C).
    4. Lu, Yiji & Roskilly, Anthony Paul & Tang, Ke & Wang, Yaodong & Jiang, Long & Yuan, Ye & Wang, Liwei, 2017. "Investigation and performance study of a dual-source chemisorption power generation cycle using scroll expander," Applied Energy, Elsevier, vol. 204(C), pages 979-993.
    5. Godefroy, Alexis & Perier-Muzet, Maxime & Mazet, Nathalie, 2020. "Novel hybrid thermochemical cycles for low-grade heat storage and autothermal power generation: A thermodynamic study," Applied Energy, Elsevier, vol. 270(C).
    6. Jiang, L. & Lu, H.T. & Wang, L.W. & Gao, P. & Zhu, F.Q. & Wang, R.Z. & Roskilly, A.P., 2017. "Investigation on a small-scale pumpless Organic Rankine Cycle (ORC) system driven by the low temperature heat source," Applied Energy, Elsevier, vol. 195(C), pages 478-486.
    7. Jiang, L. & Roskilly, A.P. & Wang, R.Z. & Wang, L.W. & Lu, Y.J., 2017. "Analysis on innovative modular sorption and resorption thermal cell for cold and heat cogeneration," Applied Energy, Elsevier, vol. 204(C), pages 767-779.
    8. Bao, Huashan & Ma, Zhiwei & Roskilly, Anthony Paul, 2017. "Chemisorption power generation driven by low grade heat – Theoretical analysis and comparison with pumpless ORC," Applied Energy, Elsevier, vol. 186(P3), pages 282-290.
    9. Jiang, L. & Wang, L.W. & Liu, C.Z. & Wang, R.Z., 2016. "Experimental study on a resorption system for power and refrigeration cogeneration," Energy, Elsevier, vol. 97(C), pages 182-190.
    10. Bao, Huashan & Ma, Zhiwei & Roskilly, Anthony Paul, 2016. "Integrated chemisorption cycles for ultra-low grade heat recovery and thermo-electric energy storage and exploitation," Applied Energy, Elsevier, vol. 164(C), pages 228-236.
    11. Jiang, L. & Wang, R.Q. & Tao, X. & Roskilly, A.P., 2020. "A hybrid resorption-compression heat transformer for energy storage and upgrade with a large temperature lift," Applied Energy, Elsevier, vol. 280(C).
    12. Aydin, Devrim & Casey, Sean P. & Chen, Xiangjie & Riffat, Saffa, 2018. "Numerical and experimental analysis of a novel heat pump driven sorption storage heater," Applied Energy, Elsevier, vol. 211(C), pages 954-974.
    13. Jiang, L. & Wang, L.W. & Zhang, X.F. & Liu, C.Z. & Wang, R.Z., 2015. "Performance prediction on a resorption cogeneration cycle for power and refrigeration with energy storage," Renewable Energy, Elsevier, vol. 83(C), pages 1250-1259.
    14. Zhao, Yanan & Luo, Zuoqing & Long, Rui & Liu, Zhichun & Liu, Wei, 2020. "Performance evaluations of an adsorption-based power and cooling cogeneration system under different operative conditions and working fluids," Energy, Elsevier, vol. 204(C).
    15. Ma, Zhiwei & Bao, Huashan & Roskilly, Anthony Paul, 2017. "Dynamic modelling and experimental validation of scroll expander for small scale power generation system," Applied Energy, Elsevier, vol. 186(P3), pages 262-281.
    16. Ullah, K.R. & Saidur, R. & Ping, H.W. & Akikur, R.K. & Shuvo, N.H., 2013. "A review of solar thermal refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 499-513.
    17. Ding, Zhixiong & Wu, Wei & Leung, Michael, 2021. "Advanced/hybrid thermal energy storage technology: material, cycle, system and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    18. Alahmer, Ali & Ajib, Salman & Wang, Xiaolin, 2019. "Comprehensive strategies for performance improvement of adsorption air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 138-158.
    19. Siddiqui, M.U. & Said, S.A.M., 2015. "A review of solar powered absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 93-115.
    20. Jiang, L. & Ji, Y. & Shi, W.K. & Fang, M.X. & Wang, T. & Zhang, X.J., 2023. "Adsorption heat/mass conversion cycle for carbon capture:Concept, thermodynamics and perspective," Energy, Elsevier, vol. 278(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:215:y:2018:i:c:p:457-467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.