IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v53y2013icp180-186.html
   My bibliography  Save this article

Numerical investigations of the effects of different arrays on power extractions of horizontal axis tidal current turbines

Author

Listed:
  • Bai, Guanghui
  • Li, Jun
  • Fan, Pengfei
  • Li, Guojun

Abstract

As the tidal current industry grows, power extraction from tidal sites has received widespread attention. In this paper, a blade element actuator disk model that is coupled with the blade element method and a three-dimensional Navier–Stokes code is developed to analyse the relationship between power extraction and the layout of turbine arrays. First, a numerical model is constructed to simulate an isolated turbine and the model is validated using experimental data. Then, using this validated model, the power extraction of horizontal axis tidal current turbines using different tidal turbine arrays and rotation directions is predicted. The results of this study demonstrate that staggered grid array turbines can absorb more power from tidal flows than can rectilinear grid array turbines and that staggered grid array turbines are less affected by the rotation of upstream turbines. In addition, for staggered gird arrays, the relationships between power coefficients, lateral distance and longitudinal distance are discussed. The appropriate lateral distance is approximately 2.5 turbine diameters, whereas for the longitudinal distance, the largest value possible should be used. The relative power coefficient can achieve 3.74 when the longitudinal distance is 6 times the turbine diameter. To further increase the power extraction, this study suggests an improved staggered grid array layout. The relative power coefficient of the improved four-row turbine arrays is approximately 3–4% higher than that of the original arrays and will increase as the distance between the second-row and third-row increases. Considering only the first two rows of turbines, the total power extraction can be 11% higher than for an equivalent number of isolated turbines.

Suggested Citation

  • Bai, Guanghui & Li, Jun & Fan, Pengfei & Li, Guojun, 2013. "Numerical investigations of the effects of different arrays on power extractions of horizontal axis tidal current turbines," Renewable Energy, Elsevier, vol. 53(C), pages 180-186.
  • Handle: RePEc:eee:renene:v:53:y:2013:i:c:p:180-186
    DOI: 10.1016/j.renene.2012.10.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112006982
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.10.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bahaj, A.S. & Molland, A.F. & Chaplin, J.R. & Batten, W.M.J., 2007. "Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank," Renewable Energy, Elsevier, vol. 32(3), pages 407-426.
    2. Garrett, Chris & Cummins, Patrick, 2008. "Limits to tidal current power," Renewable Energy, Elsevier, vol. 33(11), pages 2485-2490.
    3. Li, Ye & Çalişal, Sander M., 2010. "Numerical analysis of the characteristics of vertical axis tidal current turbines," Renewable Energy, Elsevier, vol. 35(2), pages 435-442.
    4. Myers, L.E. & Bahaj, A.S., 2012. "An experimental investigation simulating flow effects in first generation marine current energy converter arrays," Renewable Energy, Elsevier, vol. 37(1), pages 28-36.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thiébot, Jérôme & Guillou, Nicolas & Guillou, Sylvain & Good, Andrew & Lewis, Michael, 2020. "Wake field study of tidal turbines under realistic flow conditions," Renewable Energy, Elsevier, vol. 151(C), pages 1196-1208.
    2. Van Thinh Nguyen & Alina Santa Cruz & Sylvain S. Guillou & Mohamad N. Shiekh Elsouk & Jérôme Thiébot, 2019. "Effects of the Current Direction on the Energy Production of a Tidal Farm: The Case of Raz Blanchard (France)," Energies, MDPI, vol. 12(13), pages 1-20, June.
    3. Tian, Linlin & Song, Yilei & Zhao, Ning & Shen, Wenzhong & Zhu, Chunling & Wang, Tongguang, 2020. "Effects of turbulence modelling in AD/RANS simulations of single wind & tidal turbine wakes and double wake interactions," Energy, Elsevier, vol. 208(C).
    4. Guo, Qiang & Zhou, Lingjiu & Wang, Zhengwei, 2015. "Comparison of BEM-CFD and full rotor geometry simulations for the performance and flow field of a marine current turbine," Renewable Energy, Elsevier, vol. 75(C), pages 640-648.
    5. Nguyen, Van Thinh & Guillou, Sylvain S. & Thiébot, Jérôme & Santa Cruz, Alina, 2016. "Modelling turbulence with an Actuator Disk representing a tidal turbine," Renewable Energy, Elsevier, vol. 97(C), pages 625-635.
    6. Lo Brutto, Ottavio A. & Thiébot, Jérôme & Guillou, Sylvain S. & Gualous, Hamid, 2016. "A semi-analytic method to optimize tidal farm layouts – Application to the Alderney Race (Raz Blanchard), France," Applied Energy, Elsevier, vol. 183(C), pages 1168-1180.
    7. Chen, Long & Yao, Yu & Wang, Zhi-liang, 2020. "Development and validation of a prediction model for the multi-wake of tidal stream turbines," Renewable Energy, Elsevier, vol. 155(C), pages 800-809.
    8. Linlin Tian & Yilei Song & Ning Zhao & Wenzhong Shen & Tongguang Wang, 2019. "AD/RANS Simulations of Wind Turbine Wake Flow Employing the RSM Turbulence Model: Impact of Isotropic and Anisotropic Inflow Conditions," Energies, MDPI, vol. 12(21), pages 1-14, October.
    9. Marina Barbarić & Zvonimir Guzović, 2020. "Investigation of the Possibilities to Improve Hydrodynamic Performances of Micro-Hydrokinetic Turbines," Energies, MDPI, vol. 13(17), pages 1-20, September.
    10. Laws, Nicholas D. & Epps, Brenden P., 2016. "Hydrokinetic energy conversion: Technology, research, and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1245-1259.
    11. Niebuhr, C.M. & Schmidt, S. & van Dijk, M. & Smith, L. & Neary, V.S., 2022. "A review of commercial numerical modelling approaches for axial hydrokinetic turbine wake analysis in channel flow," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    12. Almoghayer, Mohammed A. & Woolf, David K. & Kerr, Sandy & Davies, Gareth, 2022. "Integration of tidal energy into an island energy system – A case study of Orkney islands," Energy, Elsevier, vol. 242(C).
    13. Leidy Tatiana Contreras & Omar Dario Lopez & Santiago Lain, 2018. "Computational Fluid Dynamics Modelling and Simulation of an Inclined Horizontal Axis Hydrokinetic Turbine," Energies, MDPI, vol. 11(11), pages 1-23, November.
    14. Schluntz, J. & Willden, R.H.J., 2015. "The effect of blockage on tidal turbine rotor design and performance," Renewable Energy, Elsevier, vol. 81(C), pages 432-441.
    15. Commin, Andrew N. & McClatchey, John & Davidson, Magnus W.H. & Gibb, Stuart W., 2017. "Close-proximity tidal phasing for ‘firm’ electricity supply," Renewable Energy, Elsevier, vol. 102(PB), pages 380-389.
    16. Bai, Guanghui & Li, Wei & Chang, Hao & Li, Guojun, 2016. "The effect of tidal current directions on the optimal design and hydrodynamic performance of a three-turbine system," Renewable Energy, Elsevier, vol. 94(C), pages 48-54.
    17. Federico Attene & Francesco Balduzzi & Alessandro Bianchini & M. Sergio Campobasso, 2020. "Using Experimentally Validated Navier-Stokes CFD to Minimize Tidal Stream Turbine Power Losses Due to Wake/Turbine Interactions," Sustainability, MDPI, vol. 12(21), pages 1-26, October.
    18. Dominguez, Favio & Achard, Jean-Luc & Zanette, Jerônimo & Corre, Christophe, 2016. "Fast power output prediction for a single row of ducted cross-flow water turbines using a BEM-RANS approach," Renewable Energy, Elsevier, vol. 89(C), pages 658-670.
    19. Ebdon, Tim & Allmark, Matthew J. & O’Doherty, Daphne M. & Mason-Jones, Allan & O’Doherty, Tim & Germain, Gregory & Gaurier, Benoit, 2021. "The impact of turbulence and turbine operating condition on the wakes of tidal turbines," Renewable Energy, Elsevier, vol. 165(P2), pages 96-116.
    20. Kartezhnikova, Maria & Ravens, Thomas M., 2014. "Hydraulic impacts of hydrokinetic devices," Renewable Energy, Elsevier, vol. 66(C), pages 425-432.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Guanghui & Li, Wei & Chang, Hao & Li, Guojun, 2016. "The effect of tidal current directions on the optimal design and hydrodynamic performance of a three-turbine system," Renewable Energy, Elsevier, vol. 94(C), pages 48-54.
    2. Kai-Wern Ng & Wei-Haur Lam & Khai-Ching Ng, 2013. "2002–2012: 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines," Energies, MDPI, vol. 6(3), pages 1-30, March.
    3. Stephen Nash & Agnieszka I. Olbert & Michael Hartnett, 2015. "Towards a Low-Cost Modelling System for Optimising the Layout of Tidal Turbine Arrays," Energies, MDPI, vol. 8(12), pages 1-19, November.
    4. Wang, Shu-qi & Cui, Jie & Ye, Ren-chuan & Chen, Zhong-fei & Zhang, Liang, 2019. "Study of the hydrodynamic performance prediction method for a horizontal-axis tidal current turbine with coupled rotation and surging motion," Renewable Energy, Elsevier, vol. 135(C), pages 313-325.
    5. Ahmadian, Reza & Falconer, Roger A., 2012. "Assessment of array shape of tidal stream turbines on hydro-environmental impacts and power output," Renewable Energy, Elsevier, vol. 44(C), pages 318-327.
    6. Fallon, D. & Hartnett, M. & Olbert, A. & Nash, S., 2014. "The effects of array configuration on the hydro-environmental impacts of tidal turbines," Renewable Energy, Elsevier, vol. 64(C), pages 10-25.
    7. Bahaj, A.S. & Myers, L.E., 2013. "Shaping array design of marine current energy converters through scaled experimental analysis," Energy, Elsevier, vol. 59(C), pages 83-94.
    8. Edmunds, Matt & Williams, Alison J. & Masters, Ian & Banerjee, Arindam & VanZwieten, James H., 2020. "A spatially nonlinear generalised actuator disk model for the simulation of horizontal axis wind and tidal turbines," Energy, Elsevier, vol. 194(C).
    9. Lloyd, Thomas P. & Turnock, Stephen R. & Humphrey, Victor F., 2014. "Assessing the influence of inflow turbulence on noise and performance of a tidal turbine using large eddy simulations," Renewable Energy, Elsevier, vol. 71(C), pages 742-754.
    10. Rourke, Fergal O. & Boyle, Fergal & Reynolds, Anthony, 2010. "Marine current energy devices: Current status and possible future applications in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1026-1036, April.
    11. Koh, W.X.M. & Ng, E.Y.K., 2017. "A CFD study on the performance of a tidal turbine under various flow and blockage conditions," Renewable Energy, Elsevier, vol. 107(C), pages 124-137.
    12. Kumar, Dinesh & Sarkar, Shibayan, 2016. "A review on the technology, performance, design optimization, reliability, techno-economics and environmental impacts of hydrokinetic energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 796-813.
    13. Gaurier, Benoît & Carlier, Clément & Germain, Grégory & Pinon, Grégory & Rivoalen, Elie, 2020. "Three tidal turbines in interaction: An experimental study of turbulence intensity effects on wakes and turbine performance," Renewable Energy, Elsevier, vol. 148(C), pages 1150-1164.
    14. Yang, Min-Hsiung & Huang, Guan-Ming & Yeh, Rong-Hua, 2016. "Performance investigation of an innovative vertical axis turbine consisting of deflectable blades," Applied Energy, Elsevier, vol. 179(C), pages 875-887.
    15. Faez Hassan, Haydar & El-Shafie, Ahmed & Karim, Othman A., 2012. "Tidal current turbines glance at the past and look into future prospects in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5707-5717.
    16. Segura, E. & Morales, R. & Somolinos, J.A. & López, A., 2017. "Techno-economic challenges of tidal energy conversion systems: Current status and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 536-550.
    17. Li, Binghui & de Queiroz, Anderson Rodrigo & DeCarolis, Joseph F. & Bane, John & He, Ruoying & Keeler, Andrew G. & Neary, Vincent S., 2017. "The economics of electricity generation from Gulf Stream currents," Energy, Elsevier, vol. 134(C), pages 649-658.
    18. Maduka, Maduka & Li, Chi Wai, 2022. "Experimental evaluation of power performance and wake characteristics of twin flanged duct turbines in tandem under bi-directional tidal flows," Renewable Energy, Elsevier, vol. 199(C), pages 1543-1567.
    19. Verbeek, M.C. & Labeur, R.J. & Uijttewaal, W.S.J., 2021. "The performance of a weir-mounted tidal turbine: An experimental investigation," Renewable Energy, Elsevier, vol. 168(C), pages 64-75.
    20. Sutherland, Duncan & Ordonez-Sanchez, Stephanie & Belmont, Michael R. & Moon, Ian & Steynor, Jeffrey & Davey, Thomas & Bruce, Tom, 2018. "Experimental optimisation of power for large arrays of cross-flow tidal turbines," Renewable Energy, Elsevier, vol. 116(PA), pages 685-696.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:53:y:2013:i:c:p:180-186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.