IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v190y2022icp584-595.html
   My bibliography  Save this article

The impact of biofilm on marine current turbine performance

Author

Listed:
  • Farkas, Andrea
  • Degiuli, Nastia
  • Martić, Ivana
  • Barbarić, Marina
  • Guzović, Zvonimir

Abstract

Although several problems related to biofouling of marine current turbines (MCTs) are reported in the literature, the most important one is related to long-term operational performance and maintenance costs. Nevertheless, studies related to the impact of biofouling on MCT performance are rather scarce. In this study, the impact of biofilm on MCT performance is investigated using the Computational Fluid Dynamics (CFD) approach. Biofilm is modelled using previously developed roughness functions implemented in a wall function solver. A verification study is performed to determine sufficient grid spacings and to calculate numerical uncertainty. The validation study is conducted by comparing the obtained results with experimental and numerical ones from the literature. Full-scale CFD simulations are performed for six fouling conditions with varying biofilm height and percentage of surface coverage at eight tip speed ratios (TSRs). The obtained results highlight the significant impact of biofilm on MCT performance reflected in a decrease in the power coefficient, which for the optimal TSR is equal to −10.7% for the R1 fouling condition. Finally, a detailed analysis of the flow around MCTs fouled with biofilm is conducted and the reasons for the detrimental impact of biofilm on MCT performance are discussed.

Suggested Citation

  • Farkas, Andrea & Degiuli, Nastia & Martić, Ivana & Barbarić, Marina & Guzović, Zvonimir, 2022. "The impact of biofilm on marine current turbine performance," Renewable Energy, Elsevier, vol. 190(C), pages 584-595.
  • Handle: RePEc:eee:renene:v:190:y:2022:i:c:p:584-595
    DOI: 10.1016/j.renene.2022.03.134
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122004189
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.03.134?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ebdon, Tim & Allmark, Matthew J. & O’Doherty, Daphne M. & Mason-Jones, Allan & O’Doherty, Tim & Germain, Gregory & Gaurier, Benoit, 2021. "The impact of turbulence and turbine operating condition on the wakes of tidal turbines," Renewable Energy, Elsevier, vol. 165(P2), pages 96-116.
    2. Guo, Qiang & Zhou, Lingjiu & Wang, Zhengwei, 2015. "Comparison of BEM-CFD and full rotor geometry simulations for the performance and flow field of a marine current turbine," Renewable Energy, Elsevier, vol. 75(C), pages 640-648.
    3. Tian, Wenlong & Ni, Xiwen & Mao, Zhaoyong & Zhang, Tianqi, 2020. "Influence of surface waves on the hydrodynamic performance of a horizontal axis ocean current turbine," Renewable Energy, Elsevier, vol. 158(C), pages 37-48.
    4. Rahimian, Masoud & Walker, Jessica & Penesis, Irene, 2018. "Performance of a horizontal axis marine current turbine– A comprehensive evaluation using experimental, numerical, and theoretical approaches," Energy, Elsevier, vol. 148(C), pages 965-976.
    5. Song, Soonseok & Demirel, Yigit Kemal & Atlar, Mehmet & Shi, Weichao, 2020. "Prediction of the fouling penalty on the tidal turbine performance and development of its mitigation measures," Applied Energy, Elsevier, vol. 276(C).
    6. Walker, Jessica M. & Flack, Karen A. & Lust, Ethan E. & Schultz, Michael P. & Luznik, Luksa, 2014. "Experimental and numerical studies of blade roughness and fouling on marine current turbine performance," Renewable Energy, Elsevier, vol. 66(C), pages 257-267.
    7. Bai, X. & Avital, E.J. & Munjiza, A. & Williams, J.J.R., 2014. "Numerical simulation of a marine current turbine in free surface flow," Renewable Energy, Elsevier, vol. 63(C), pages 715-723.
    8. Li, Xiaorong & Li, Ming & McLelland, Stuart J. & Jordan, Laura-Beth & Simmons, Stephen M. & Amoudry, Laurent O. & Ramirez-Mendoza, Rafael & Thorne, Peter D., 2017. "Modelling tidal stream turbines in a three-dimensional wave-current fully coupled oceanographic model," Renewable Energy, Elsevier, vol. 114(PA), pages 297-307.
    9. Payne, Grégory S. & Stallard, Tim & Martinez, Rodrigo, 2017. "Design and manufacture of a bed supported tidal turbine model for blade and shaft load measurement in turbulent flow and waves," Renewable Energy, Elsevier, vol. 107(C), pages 312-326.
    10. Mueller, Markus & Wallace, Robin, 2008. "Enabling science and technology for marine renewable energy," Energy Policy, Elsevier, vol. 36(12), pages 4376-4382, December.
    11. Kai-Wern Ng & Wei-Haur Lam & Khai-Ching Ng, 2013. "2002–2012: 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines," Energies, MDPI, vol. 6(3), pages 1-30, March.
    12. Jadidi, P. & Zeinoddini, M., 2020. "Influence of hard marine fouling on energy harvesting from Vortex-Induced Vibrations of a single-cylinder," Renewable Energy, Elsevier, vol. 152(C), pages 516-528.
    13. Jo, Chul hee & Yim, Jin young & Lee, Kang hee & Rho, Yu ho, 2012. "Performance of horizontal axis tidal current turbine by blade configuration," Renewable Energy, Elsevier, vol. 42(C), pages 195-206.
    14. Andrea Farkas & Nastia Degiuli & Ivana Martić, 2019. "Assessment of Offshore Wave Energy Potential in the Croatian Part of the Adriatic Sea and Comparison with Wind Energy Potential," Energies, MDPI, vol. 12(12), pages 1-20, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergio Campobasso, M. & Castorrini, Alessio & Ortolani, Andrea & Minisci, Edmondo, 2023. "Probabilistic analysis of wind turbine performance degradation due to blade erosion accounting for uncertainty of damage geometry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    2. Hasan, Mohammad Maruf & Du, Fang, 2023. "The role of foreign trade and technology innovation on economic recovery in China: The mediating role of natural resources development," Resources Policy, Elsevier, vol. 80(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Segura, E. & Morales, R. & Somolinos, J.A., 2018. "A strategic analysis of tidal current energy conversion systems in the European Union," Applied Energy, Elsevier, vol. 212(C), pages 527-551.
    2. Gao, Jinjin & Liu, Han & Lee, Jiyong & Zheng, Yuan & Guala, Michele & Shen, Lian, 2022. "Large-eddy simulation and Co-Design strategy for a drag-type vertical axis hydrokinetic turbine in open channel flows," Renewable Energy, Elsevier, vol. 181(C), pages 1305-1316.
    3. Qian, Peng & Feng, Bo & Liu, Hao & Tian, Xiange & Si, Yulin & Zhang, Dahai, 2019. "Review on configuration and control methods of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 125-139.
    4. Abel Arredondo-Galeana & Baran Yeter & Farhad Abad & Stephanie Ordóñez-Sánchez & Saeid Lotfian & Feargal Brennan, 2023. "Material Selection Framework for Lift-Based Wave Energy Converters Using Fuzzy TOPSIS," Energies, MDPI, vol. 16(21), pages 1-26, October.
    5. Ilias Gavriilidis & Yuner Huang, 2021. "Finite Element Analysis of Tidal Turbine Blade Subjected to Impact Loads from Sea Animals," Energies, MDPI, vol. 14(21), pages 1-20, November.
    6. Calero Quesada, María Concepción & García Lafuente, Jesús & Sánchez Garrido, José Carlos & Sammartino, Simone & Delgado, Javier, 2014. "Energy of marine currents in the Strait of Gibraltar and its potential as a renewable energy resource," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 98-109.
    7. Ramin Alipour & Roozbeh Alipour & Seyed Saeid Rahimian Koloor & Michal Petrů & Seyed Alireza Ghazanfari, 2020. "On the Performance of Small-Scale Horizontal Axis Tidal Current Turbines. Part 1: One Single Turbine," Sustainability, MDPI, vol. 12(15), pages 1-25, July.
    8. Dong, Yongjun & Guo, Jingfu & Chen, Jianmei & Sun, Chao & Zhu, Wanqiang & Chen, Liwei & Zhang, Xueming, 2021. "Development of a 300 kW horizontal-axis tidal stream energy conversion system with adaptive variable-pitch turbine and direct-drive PMSG," Energy, Elsevier, vol. 226(C).
    9. Li, Xiaorong & Li, Ming & Jordan, Laura-Beth & McLelland, Stuart & Parsons, Daniel R. & Amoudry, Laurent O. & Song, Qingyang & Comerford, Liam, 2019. "Modelling impacts of tidal stream turbines on surface waves," Renewable Energy, Elsevier, vol. 130(C), pages 725-734.
    10. Perez, Larissa & Cossu, Remo & Grinham, Alistair & Penesis, Irene, 2022. "An investigation of tidal turbine performance and loads under various turbulence conditions using Blade Element Momentum theory and high-frequency field data acquired in two prospective tidal energy s," Renewable Energy, Elsevier, vol. 201(P1), pages 928-937.
    11. Perez, Larissa & Cossu, Remo & Grinham, Alistair & Penesis, Irene, 2022. "Tidal turbine performance and loads for various hub heights and wave conditions using high-frequency field measurements and Blade Element Momentum theory," Renewable Energy, Elsevier, vol. 200(C), pages 1548-1560.
    12. Song, Soonseok & Demirel, Yigit Kemal & Atlar, Mehmet & Shi, Weichao, 2020. "Prediction of the fouling penalty on the tidal turbine performance and development of its mitigation measures," Applied Energy, Elsevier, vol. 276(C).
    13. Muhammed Zafar Ali Khan & Haider Ali Khan & Muhammad Aziz, 2022. "Harvesting Energy from Ocean: Technologies and Perspectives," Energies, MDPI, vol. 15(9), pages 1-43, May.
    14. Wang, Wen-Quan & Yin, Rui & Yan, Yan, 2019. "Design and prediction hydrodynamic performance of horizontal axis micro-hydrokinetic river turbine," Renewable Energy, Elsevier, vol. 133(C), pages 91-102.
    15. Uihlein, Andreas & Magagna, Davide, 2016. "Wave and tidal current energy – A review of the current state of research beyond technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1070-1081.
    16. Niebuhr, C.M. & Schmidt, S. & van Dijk, M. & Smith, L. & Neary, V.S., 2022. "A review of commercial numerical modelling approaches for axial hydrokinetic turbine wake analysis in channel flow," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    17. Craig Hill & Vincent S. Neary & Michele Guala & Fotis Sotiropoulos, 2020. "Performance and Wake Characterization of a Model Hydrokinetic Turbine: The Reference Model 1 (RM1) Dual Rotor Tidal Energy Converter," Energies, MDPI, vol. 13(19), pages 1-21, October.
    18. Li, Wei & Zhou, Hongbin & Liu, Hongwei & Lin, Yonggang & Xu, Quankun, 2016. "Review on the blade design technologies of tidal current turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 414-422.
    19. Wang, Shu-qi & Li, Chen-yin & Zhang, Ying & Jing, Feng-mei & Chen, Lin-feng, 2022. "Influence of pitching motion on the hydrodynamic performance of a horizontal axis tidal turbine considering the surface wave," Renewable Energy, Elsevier, vol. 189(C), pages 1020-1032.
    20. Li, Xiaorong & Li, Ming & Amoudry, Laurent O. & Ramirez-Mendoza, Rafael & Thorne, Peter D. & Song, Qingyang & Zheng, Peng & Simmons, Stephen M. & Jordan, Laura-Beth & McLelland, Stuart J., 2020. "Three-dimensional modelling of suspended sediment transport in the far wake of tidal stream turbines," Renewable Energy, Elsevier, vol. 151(C), pages 956-965.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:190:y:2022:i:c:p:584-595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.