IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v108y2017icp622-634.html
   My bibliography  Save this article

An investigation of ducted and open-centre tidal turbines employing CFD-embedded BEM

Author

Listed:
  • Belloni, C.S.K.
  • Willden, R.H.J.
  • Houlsby, G.T.

Abstract

This paper presents a numerical investigation of ducted tidal turbines, employing three-dimensional Reynolds-averaged Navier-Stokes simulations. Bidirectional ducted turbines are modelled with and without apertures, referred to as ducted and open-centre turbines respectively.

Suggested Citation

  • Belloni, C.S.K. & Willden, R.H.J. & Houlsby, G.T., 2017. "An investigation of ducted and open-centre tidal turbines employing CFD-embedded BEM," Renewable Energy, Elsevier, vol. 108(C), pages 622-634.
  • Handle: RePEc:eee:renene:v:108:y:2017:i:c:p:622-634
    DOI: 10.1016/j.renene.2016.10.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116309132
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.10.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Setoguchi, Toshiaki & Shiomi, Norimasa & Kaneko, Kenji, 2004. "Development of two-way diffuser for fluid energy conversion system," Renewable Energy, Elsevier, vol. 29(10), pages 1757-1771.
    2. Gaden, David L.F. & Bibeau, Eric L., 2010. "A numerical investigation into the effect of diffusers on the performance of hydro kinetic turbines using a validated momentum source turbine model," Renewable Energy, Elsevier, vol. 35(6), pages 1152-1158.
    3. O Rourke, Fergal & Boyle, Fergal & Reynolds, Anthony, 2010. "Tidal energy update 2009," Applied Energy, Elsevier, vol. 87(2), pages 398-409, February.
    4. Schluntz, J. & Willden, R.H.J., 2015. "The effect of blockage on tidal turbine rotor design and performance," Renewable Energy, Elsevier, vol. 81(C), pages 432-441.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Borg, Mitchell G. & Xiao, Qing & Allsop, Steven & Incecik, Atilla & Peyrard, Christophe, 2020. "A numerical performance analysis of a ducted, high-solidity tidal turbine," Renewable Energy, Elsevier, vol. 159(C), pages 663-682.
    2. Marina Barbarić & Zvonimir Guzović, 2020. "Investigation of the Possibilities to Improve Hydrodynamic Performances of Micro-Hydrokinetic Turbines," Energies, MDPI, vol. 13(17), pages 1-20, September.
    3. Milad Shadman & Corbiniano Silva & Daiane Faller & Zhijia Wu & Luiz Paulo de Freitas Assad & Luiz Landau & Carlos Levi & Segen F. Estefen, 2019. "Ocean Renewable Energy Potential, Technology, and Deployments: A Case Study of Brazil," Energies, MDPI, vol. 12(19), pages 1-37, September.
    4. Garcia-Novo, Patxi & Inubuse, Masako & Matsuno, Takeshi & Kyozuka, Yusaku & Archer, Philip & Matsuo, Hiroshi & Henzan, Katsuhiro & Sakaguchi, Daisaku, 2024. "Characterization of the wake generated downstream of a MW-scale tidal turbine in Naru Strait, Japan, based on vessel-mounted ADCP data," Energy, Elsevier, vol. 299(C).
    5. Borg, Mitchell G. & Xiao, Qing & Allsop, Steven & Incecik, Atilla & Peyrard, Christophe, 2022. "A numerical performance analysis of a ducted, high-solidity tidal turbine in yawed flow conditions," Renewable Energy, Elsevier, vol. 193(C), pages 179-194.
    6. Saleem, Arslan & Kim, Man-Hoe, 2019. "Performance of buoyant shell horizontal axis wind turbine under fluctuating yaw angles," Energy, Elsevier, vol. 169(C), pages 79-91.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borg, Mitchell G. & Xiao, Qing & Allsop, Steven & Incecik, Atilla & Peyrard, Christophe, 2020. "A numerical performance analysis of a ducted, high-solidity tidal turbine," Renewable Energy, Elsevier, vol. 159(C), pages 663-682.
    2. T., Micha Premkumar & Chatterjee, Dhiman, 2015. "Computational analysis of flow over a cascade of S-shaped hydrofoil of fully reversible pump-turbine used in extracting tidal energy," Renewable Energy, Elsevier, vol. 77(C), pages 240-249.
    3. Nunes, Matheus M. & Mendes, Rafael C.F. & Oliveira, Taygoara F. & Brasil Junior, Antonio C.P., 2019. "An experimental study on the diffuser-enhanced propeller hydrokinetic turbines," Renewable Energy, Elsevier, vol. 133(C), pages 840-848.
    4. Amelio, Mario & Barbarelli, Silvio & Florio, Gaetano & Scornaienchi, Nino Michele & Minniti, Giovanni & Cutrupi, Antonino & Sánchez-Blanco, Manuel, 2012. "Innovative tidal turbine with central deflector for the exploitation of river and sea currents in on-shore installations," Applied Energy, Elsevier, vol. 97(C), pages 944-955.
    5. Nunes, Matheus M. & Brasil Junior, Antonio C.P. & Oliveira, Taygoara F., 2020. "Systematic review of diffuser-augmented horizontal-axis turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. Gaden, David L.F. & Bibeau, Eric L., 2010. "A numerical investigation into upstream boundary-layer interruption and its potential benefits for river and ocean kinetic hydropower," Renewable Energy, Elsevier, vol. 35(10), pages 2270-2278.
    7. Chen, Yaling & Lin, Binliang & Lin, Jie & Wang, Shujie, 2017. "Experimental study of wake structure behind a horizontal axis tidal stream turbine," Applied Energy, Elsevier, vol. 196(C), pages 82-96.
    8. Kai-Wern Ng & Wei-Haur Lam & Khai-Ching Ng, 2013. "2002–2012: 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines," Energies, MDPI, vol. 6(3), pages 1-30, March.
    9. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Cuamba, Boaventura C. & Molander, Sverker, 2012. "Renewable ocean energy in the Western Indian Ocean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4938-4950.
    10. Zarzuelo, Carmen & López-Ruiz, Alejandro & Ortega-Sánchez, Miguel, 2018. "Impact of human interventions on tidal stream power: The case of Cádiz Bay," Energy, Elsevier, vol. 145(C), pages 88-104.
    11. Thiébaut, Maxime & Sentchev, Alexei, 2017. "Asymmetry of tidal currents off the W.Brittany coast and assessment of tidal energy resource around the Ushant Island," Renewable Energy, Elsevier, vol. 105(C), pages 735-747.
    12. Tjiu, Willy & Marnoto, Tjukup & Mat, Sohif & Ruslan, Mohd Hafidz & Sopian, Kamaruzzaman, 2015. "Darrieus vertical axis wind turbine for power generation I: Assessment of Darrieus VAWT configurations," Renewable Energy, Elsevier, vol. 75(C), pages 50-67.
    13. Liu, Hong-wei & Ma, Shun & Li, Wei & Gu, Hai-gang & Lin, Yong-gang & Sun, Xiao-jing, 2011. "A review on the development of tidal current energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1141-1146, February.
    14. Zeyringer, Marianne & Fais, Birgit & Keppo, Ilkka & Price, James, 2018. "The potential of marine energy technologies in the UK – Evaluation from a systems perspective," Renewable Energy, Elsevier, vol. 115(C), pages 1281-1293.
    15. Khan, M.J. & Bhuyan, G. & Iqbal, M.T. & Quaicoe, J.E., 2009. "Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review," Applied Energy, Elsevier, vol. 86(10), pages 1823-1835, October.
    16. Elbatran, A.H. & Ahmed, Yasser M. & Shehata, Ahmed S., 2017. "Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine," Energy, Elsevier, vol. 134(C), pages 566-584.
    17. Angeloudis, Athanasios & Ahmadian, Reza & Falconer, Roger A. & Bockelmann-Evans, Bettina, 2016. "Numerical model simulations for optimisation of tidal lagoon schemes," Applied Energy, Elsevier, vol. 165(C), pages 522-536.
    18. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    19. Chen, Zhenlin & Alam, Md. Mahbub & Qin, Bin & Zhou, Yu, 2020. "Energy harvesting from and vibration response of different diameter cylinders," Applied Energy, Elsevier, vol. 278(C).
    20. Rtimi, Rajae & Sottolichio, Aldo & Tassi, Pablo, 2022. "The Rance tidal power station: Toward a better understanding of sediment dynamics in response to power generation," Renewable Energy, Elsevier, vol. 201(P1), pages 323-343.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:108:y:2017:i:c:p:622-634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.