Performance evaluation and parametric optimum design of a syngas molten carbonate fuel cell and gas turbine hybrid system
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2015.02.035
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Antolini, Ermete, 2011. "The stability of molten carbonate fuel cell electrodes: A review of recent improvements," Applied Energy, Elsevier, vol. 88(12), pages 4274-4293.
- Centeno González, Felipe O. & Mahkamov, Khamid & Silva Lora, Electo E. & Andrade, Rubenildo V. & Jaen, René Lesme, 2013. "Prediction by mathematical modeling of the behavior of an internal combustion engine to be fed with gas from biomass, in comparison to the same engine fueled with gasoline or methane," Renewable Energy, Elsevier, vol. 60(C), pages 427-432.
- Chacartegui, R. & Blanco, M.J. & Muñoz de Escalona, J.M. & Sánchez, D. & Sánchez, T., 2013. "Performance assessment of Molten Carbonate Fuel Cell–Humid Air Turbine hybrid systems," Applied Energy, Elsevier, vol. 102(C), pages 687-699.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Anatoly Antipov & Roman Pichugov & Lilia Abunaeva & Shengfu Tong & Mikhail Petrov & Alla Pustovalova & Ivan Speshilov & Natalia Kartashova & Pavel Loktionov & Alexander Modestov & Artem Glazkov, 2022. "Halogen Hybrid Flow Batteries Advances for Stationary Chemical Power Sources Technologies," Energies, MDPI, vol. 15(19), pages 1-20, October.
- Piadehrouhi, Forough & Ghorbani, Bahram & Miansari, Mehdi & Mehrpooya, Mehdi, 2019. "Development of a new integrated structure for simultaneous generation of power and liquid carbon dioxide using solar dish collectors," Energy, Elsevier, vol. 179(C), pages 938-959.
- Han, Yuan & Zhang, Houcheng & Hu, Ziyang & Hou, Shujin, 2021. "An efficient hybrid system using a graphene-based cathode vacuum thermionic energy converter to harvest the waste heat from a molten hydroxide direct carbon fuel cell," Energy, Elsevier, vol. 223(C).
- Abdollahipour, Armin & Sayyaadi, Hoseyn, 2021. "Thermal energy recovery of molten carbonate fuel cells by thermally regenerative electrochemical cycles," Energy, Elsevier, vol. 227(C).
- Liang, Qi & He, Ya-Ling & Ren, Qinlong & Zhou, Yi-Peng & Xie, Tao, 2018. "A detailed study on phonon transport in thin silicon membranes with phononic crystal nanostructures," Applied Energy, Elsevier, vol. 227(C), pages 731-741.
- Xu, Haoran & Chen, Bin & Tan, Peng & Cai, Weizi & Wu, Yiyang & Zhang, Houcheng & Ni, Meng, 2018. "A feasible way to handle the heat management of direct carbon solid oxide fuel cells," Applied Energy, Elsevier, vol. 226(C), pages 881-890.
- Wu, Sijie & Zhang, Houcheng & Ni, Meng, 2016. "Performance assessment of a hybrid system integrating a molten carbonate fuel cell and a thermoelectric generator," Energy, Elsevier, vol. 112(C), pages 520-527.
- Chen, Xiaohang & Wang, Yuan & Zhao, Yingru & Zhou, Yinghui, 2016. "A study of double functions and load matching of a phosphoric acid fuel cell/heat-driven refrigerator hybrid system," Energy, Elsevier, vol. 101(C), pages 359-365.
- Rahmad Syah & Afshin Davarpanah & Mahyuddin K. M. Nasution & Faisal Amri Tanjung & Meysam Majidi Nezhad & Mehdi Nesaht, 2021. "A Comprehensive Thermoeconomic Evaluation and Multi-Criteria Optimization of a Combined MCFC/TEG System," Sustainability, MDPI, vol. 13(23), pages 1-29, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Shiyi & Zhou, Nan & Wu, Mudi & Chen, Shubo & Xiang, Wenguo, 2022. "Integration of molten carbonate fuel cell and chemical looping air separation for high-efficient power generation and CO2 capture," Energy, Elsevier, vol. 254(PA).
- Baronci, Andrea & Messina, Giuseppe & McPhail, Stephen J. & Moreno, Angelo, 2015. "Numerical investigation of a MCFC (Molten Carbonate Fuel Cell) system hybridized with a supercritical CO2 Brayton cycle and compared with a bottoming Organic Rankine Cycle," Energy, Elsevier, vol. 93(P1), pages 1063-1073.
- Al-attab, K.A. & Zainal, Z.A., 2015. "Externally fired gas turbine technology: A review," Applied Energy, Elsevier, vol. 138(C), pages 474-487.
- Vargas-Salgado, Carlos & Águila-León, Jesús & Alfonso-Solar, David & Malmquist, Anders, 2022. "Simulations and experimental study to compare the behavior of a genset running on gasoline or syngas for small scale power generation," Energy, Elsevier, vol. 244(PA).
- Çalışır, Duran & Ekici, Selcuk & Midilli, Adnan & Karakoc, T. Hikmet, 2023. "Benchmarking environmental impacts of power groups used in a designed UAV: Hybrid hydrogen fuel cell system versus lithium-polymer battery drive system," Energy, Elsevier, vol. 262(PB).
- Rizkiana, Jenny & Guan, Guoqing & Widayatno, Wahyu Bambang & Hao, Xiaogang & Wang, Zhongde & Zhang, Zhonglin & Abudula, Abuliti, 2015. "Oil production from mild pyrolysis of low-rank coal in molten salts media," Applied Energy, Elsevier, vol. 154(C), pages 944-950.
- Zakaria, Zulfirdaus & Kamarudin, Siti Kartom & Abd Wahid, Khairul Anuar & Abu Hassan, Saiful Hasmady, 2021. "The progress of fuel cell for malaysian residential consumption: Energy status and prospects to introduction as a renewable power generation system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Abdollahipour, Armin & Sayyaadi, Hoseyn, 2021. "Thermal energy recovery of molten carbonate fuel cells by thermally regenerative electrochemical cycles," Energy, Elsevier, vol. 227(C).
- Yang, Bo & Liang, Boxiao & Qian, Yucun & Zheng, Ruyi & Su, Shi & Guo, Zhengxun & Jiang, Lin, 2024. "Parameter identification of PEMFC via feedforward neural network-pelican optimization algorithm," Applied Energy, Elsevier, vol. 361(C).
- Skabelund, B.B. & Milcarek, R.J., 2022. "Review of thermal partial oxidation reforming with integrated solid oxide fuel cell power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Haghighat Mamaghani, Alireza & Najafi, Behzad & Shirazi, Ali & Rinaldi, Fabio, 2015. "4E analysis and multi-objective optimization of an integrated MCFC (molten carbonate fuel cell) and ORC (organic Rankine cycle) system," Energy, Elsevier, vol. 82(C), pages 650-663.
- Lo Basso, Gianluigi & de Santoli, Livio & Albo, Angelo & Nastasi, Benedetto, 2015. "H2NG (hydrogen-natural gas mixtures) effects on energy performances of a condensing micro-CHP (combined heat and power) for residential applications: An expeditious assessment of water condensation an," Energy, Elsevier, vol. 84(C), pages 397-418.
- Mohammed, Hanin & Al-Othman, Amani & Nancarrow, Paul & Tawalbeh, Muhammad & El Haj Assad, Mamdouh, 2019. "Direct hydrocarbon fuel cells: A promising technology for improving energy efficiency," Energy, Elsevier, vol. 172(C), pages 207-219.
- Wu, Sijie & Zhang, Houcheng & Ni, Meng, 2016. "Performance assessment of a hybrid system integrating a molten carbonate fuel cell and a thermoelectric generator," Energy, Elsevier, vol. 112(C), pages 520-527.
- Roberts, Justo José & Mendiburu Zevallos, Andrés A. & Cassula, Agnelo Marotta, 2017. "Assessment of photovoltaic performance models for system simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1104-1123.
- Iora, P. & Silva, P., 2013. "Innovative combined heat and power system based on a double shaft intercooled externally fired gas cycle," Applied Energy, Elsevier, vol. 105(C), pages 108-115.
- Das, Satyen Kumar & Mohanty, Pravakar & Majhi, Sachchit & Pant, Kamal Kishore, 2013. "CO-hydrogenation over silica supported iron based catalysts: Influence of potassium loading," Applied Energy, Elsevier, vol. 111(C), pages 267-276.
- Díaz González, Carlos A. & Pacheco Sandoval, Leonardo, 2020. "Sustainability aspects of biomass gasification systems for small power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Falcucci, G. & Jannelli, E. & Minutillo, M. & Ubertini, S. & Han, J. & Yoon, S.P. & Nam, S.W., 2012. "Integrated numerical and experimental study of a MCFC-plasma gasifier energy system," Applied Energy, Elsevier, vol. 97(C), pages 734-742.
More about this item
Keywords
Molten carbonate fuel cell; Gas turbine; Internal fuel reforming; Performance characteristic analysis; Optimization criteria;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:80:y:2015:i:c:p:407-414. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.