IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i12p4274-4293.html
   My bibliography  Save this article

The stability of molten carbonate fuel cell electrodes: A review of recent improvements

Author

Listed:
  • Antolini, Ermete

Abstract

The electrode stability is a key issue for the development of conventional hydrogen fuelled and direct internal reforming (DIR) molten carbonate fuel cells (MCFCs). While for conventional MCFC anodes the stability problem has been addressed by the addition of Al or Cr to Ni, the problems of the dissolution of the NiO cathode and of the deactivation of DIR-MCFC anodes have not been fully resolved too. This review reports recent improvements in the chemical and physicochemical stability of cathode and anode materials in MCFCs and DIR-MCFCs, respectively.

Suggested Citation

  • Antolini, Ermete, 2011. "The stability of molten carbonate fuel cell electrodes: A review of recent improvements," Applied Energy, Elsevier, vol. 88(12), pages 4274-4293.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:12:p:4274-4293
    DOI: 10.1016/j.apenergy.2011.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911004545
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.07.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammed, Hanin & Al-Othman, Amani & Nancarrow, Paul & Tawalbeh, Muhammad & El Haj Assad, Mamdouh, 2019. "Direct hydrocarbon fuel cells: A promising technology for improving energy efficiency," Energy, Elsevier, vol. 172(C), pages 207-219.
    2. Zhang, Xiuqin & Liu, Huiying & Ni, Meng & Chen, Jincan, 2015. "Performance evaluation and parametric optimum design of a syngas molten carbonate fuel cell and gas turbine hybrid system," Renewable Energy, Elsevier, vol. 80(C), pages 407-414.
    3. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2021. "Thermal energy recovery of molten carbonate fuel cells by thermally regenerative electrochemical cycles," Energy, Elsevier, vol. 227(C).
    4. Yang, Bo & Liang, Boxiao & Qian, Yucun & Zheng, Ruyi & Su, Shi & Guo, Zhengxun & Jiang, Lin, 2024. "Parameter identification of PEMFC via feedforward neural network-pelican optimization algorithm," Applied Energy, Elsevier, vol. 361(C).
    5. Skabelund, B.B. & Milcarek, R.J., 2022. "Review of thermal partial oxidation reforming with integrated solid oxide fuel cell power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Rizkiana, Jenny & Guan, Guoqing & Widayatno, Wahyu Bambang & Hao, Xiaogang & Wang, Zhongde & Zhang, Zhonglin & Abudula, Abuliti, 2015. "Oil production from mild pyrolysis of low-rank coal in molten salts media," Applied Energy, Elsevier, vol. 154(C), pages 944-950.
    7. Falcucci, G. & Jannelli, E. & Minutillo, M. & Ubertini, S. & Han, J. & Yoon, S.P. & Nam, S.W., 2012. "Integrated numerical and experimental study of a MCFC-plasma gasifier energy system," Applied Energy, Elsevier, vol. 97(C), pages 734-742.
    8. Chen, Shiyi & Zhou, Nan & Wu, Mudi & Chen, Shubo & Xiang, Wenguo, 2022. "Integration of molten carbonate fuel cell and chemical looping air separation for high-efficient power generation and CO2 capture," Energy, Elsevier, vol. 254(PA).
    9. Wu, Sijie & Zhang, Houcheng & Ni, Meng, 2016. "Performance assessment of a hybrid system integrating a molten carbonate fuel cell and a thermoelectric generator," Energy, Elsevier, vol. 112(C), pages 520-527.
    10. Çalışır, Duran & Ekici, Selcuk & Midilli, Adnan & Karakoc, T. Hikmet, 2023. "Benchmarking environmental impacts of power groups used in a designed UAV: Hybrid hydrogen fuel cell system versus lithium-polymer battery drive system," Energy, Elsevier, vol. 262(PB).
    11. Lo Basso, Gianluigi & de Santoli, Livio & Albo, Angelo & Nastasi, Benedetto, 2015. "H2NG (hydrogen-natural gas mixtures) effects on energy performances of a condensing micro-CHP (combined heat and power) for residential applications: An expeditious assessment of water condensation an," Energy, Elsevier, vol. 84(C), pages 397-418.
    12. Das, Satyen Kumar & Mohanty, Pravakar & Majhi, Sachchit & Pant, Kamal Kishore, 2013. "CO-hydrogenation over silica supported iron based catalysts: Influence of potassium loading," Applied Energy, Elsevier, vol. 111(C), pages 267-276.
    13. Zakaria, Zulfirdaus & Kamarudin, Siti Kartom & Abd Wahid, Khairul Anuar & Abu Hassan, Saiful Hasmady, 2021. "The progress of fuel cell for malaysian residential consumption: Energy status and prospects to introduction as a renewable power generation system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:12:p:4274-4293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.