IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v226y2018icp881-890.html
   My bibliography  Save this article

A feasible way to handle the heat management of direct carbon solid oxide fuel cells

Author

Listed:
  • Xu, Haoran
  • Chen, Bin
  • Tan, Peng
  • Cai, Weizi
  • Wu, Yiyang
  • Zhang, Houcheng
  • Ni, Meng

Abstract

A novel integrated system consisting of an external heat source, a direct carbon solid oxide fuel cell (DC-SOFC), a vacuum thermionic generator (VTIG) and a regenerator is proposed to handle the heat management of the DC-SOFC. The electrochemical/chemical reactions, ionic/electronic charge transport, mass/momentum transport and heat transfer are fully considered in the 2D tubular DC-SOFC model, which shows that the overall heat released in the cell is always different from the heat required by the internal Boudouard reaction. Three different operation strategies of the proposed system are presented, and accordingly, analytical expressions for the overall power output and efficiency for the proposed system are specified. The results show that the VTIG could effectively recover the waste heat for additional power production at a large operating current density, and the maximum power density and efficiency of the proposed system could reach more than 8100 W m−2 and 60% at 30,000 A m−2 and 1173 K, respectively. The effects of the operating current density, the operating temperature and the distance between the carbon layer and anode of the DC-SOFC, and the size, anode temperature and work function of the VTIG on the performance of the proposed system are discussed through comprehensive parametric studies.

Suggested Citation

  • Xu, Haoran & Chen, Bin & Tan, Peng & Cai, Weizi & Wu, Yiyang & Zhang, Houcheng & Ni, Meng, 2018. "A feasible way to handle the heat management of direct carbon solid oxide fuel cells," Applied Energy, Elsevier, vol. 226(C), pages 881-890.
  • Handle: RePEc:eee:appene:v:226:y:2018:i:c:p:881-890
    DOI: 10.1016/j.apenergy.2018.06.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918309115
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.06.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yuan & Cai, Ling & Liu, Tie & Wang, Junyi & Chen, Jincan, 2015. "An efficient strategy exploiting the waste heat in a solid oxide fuel cell system," Energy, Elsevier, vol. 93(P1), pages 900-907.
    2. Xu, Haoran & Chen, Bin & Tan, Peng & Zhang, Houcheng & Yuan, Jinliang & Liu, Jiang & Ni, Meng, 2017. "Performance improvement of a direct carbon solid oxide fuel cell system by combining with a Stirling cycle," Energy, Elsevier, vol. 140(P1), pages 979-987.
    3. Zhang, Xiuqin & Liu, Huiying & Ni, Meng & Chen, Jincan, 2015. "Performance evaluation and parametric optimum design of a syngas molten carbonate fuel cell and gas turbine hybrid system," Renewable Energy, Elsevier, vol. 80(C), pages 407-414.
    4. Wang, Yuan & Su, Shanhe & Liu, Tie & Su, Guozhen & Chen, Jincan, 2015. "Performance evaluation and parametric optimum design of an updated thermionic-thermoelectric generator hybrid system," Energy, Elsevier, vol. 90(P2), pages 1575-1583.
    5. Xiao, Gang & Zheng, Guanghua & Ni, Dong & Li, Qiang & Qiu, Min & Ni, Mingjiang, 2018. "Thermodynamic assessment of solar photon-enhanced thermionic conversion," Applied Energy, Elsevier, vol. 223(C), pages 134-145.
    6. Xu, Haoran & Chen, Bin & Liu, Jiang & Ni, Meng, 2016. "Modeling of direct carbon solid oxide fuel cell for CO and electricity cogeneration," Applied Energy, Elsevier, vol. 178(C), pages 353-362.
    7. Luo, Yu & Shi, Yixiang & Li, Wenying & Cai, Ningsheng, 2014. "Comprehensive modeling of tubular solid oxide electrolysis cell for co-electrolysis of steam and carbon dioxide," Energy, Elsevier, vol. 70(C), pages 420-434.
    8. Sadrameli, S.M., 2016. "Mathematical models for the simulation of thermal regenerators: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 462-476.
    9. Santini, Lorenzo & Accornero, Carlo & Cioncolini, Andrea, 2016. "On the adoption of carbon dioxide thermodynamic cycles for nuclear power conversion: A case study applied to Mochovce 3 Nuclear Power Plant," Applied Energy, Elsevier, vol. 181(C), pages 446-463.
    10. Xu, Haoran & Chen, Bin & Tan, Peng & Cai, Weizi & He, Wei & Farrusseng, David & Ni, Meng, 2018. "Modeling of all porous solid oxide fuel cells," Applied Energy, Elsevier, vol. 219(C), pages 105-113.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Habibollahzade, Ali & Gholamian, Ehsan & Behzadi, Amirmohammad, 2019. "Multi-objective optimization and comparative performance analysis of hybrid biomass-based solid oxide fuel cell/solid oxide electrolyzer cell/gas turbine using different gasification agents," Applied Energy, Elsevier, vol. 233, pages 985-1002.
    2. Chen, Siyu & Xue, Yejian & Li, Jianming & Zhang, Houcheng & Zhou, Lihua & Li, Yangyang, 2023. "Efficient and geometry-matching two-stage annular thermoelectric generator for tubular solid oxide fuel cell waste heat recovery," Energy, Elsevier, vol. 285(C).
    3. Xu, Haoran & Maroto-Valer, M. Mercedes & Ni, Meng & Cao, Jun & Xuan, Jin, 2019. "Low carbon fuel production from combined solid oxide CO2 co-electrolysis and Fischer-Tropsch synthesis system: A modelling study," Applied Energy, Elsevier, vol. 242(C), pages 911-918.
    4. Xu, Haoran & Chen, Bin & Tan, Peng & Sun, Qiong & Maroto-Valer, M. Mercedes & Ni, Meng, 2019. "Modelling of a hybrid system for on-site power generation from solar fuels," Applied Energy, Elsevier, vol. 240(C), pages 709-718.
    5. Sun, Yi & Qian, Tang & Zhu, Jingdong & Zheng, Nan & Han, Yu & Xiao, Gang & Ni, Meng & Xu, Haoran, 2023. "Dynamic simulation of a reversible solid oxide cell system for efficient H2 production and power generation," Energy, Elsevier, vol. 263(PA).
    6. Gong, Chengyuan & Tu, Zhengkai & Hwa Chan, Siew, 2023. "A novel flow field design with flow re-distribution for advanced thermal management in Solid oxide fuel cell," Applied Energy, Elsevier, vol. 331(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Haoran & Chen, Bin & Tan, Peng & Xuan, Jin & Maroto-Valer, M. Mercedes & Farrusseng, David & Sun, Qiong & Ni, Meng, 2019. "Modeling of all-porous solid oxide fuel cells with a focus on the electrolyte porosity design," Applied Energy, Elsevier, vol. 235(C), pages 602-611.
    2. Han, Yuan & Zhang, Houcheng & Hu, Ziyang & Hou, Shujin, 2021. "An efficient hybrid system using a graphene-based cathode vacuum thermionic energy converter to harvest the waste heat from a molten hydroxide direct carbon fuel cell," Energy, Elsevier, vol. 223(C).
    3. Xu, Haoran & Chen, Bin & Tan, Peng & Zhang, Houcheng & Yuan, Jinliang & Liu, Jiang & Ni, Meng, 2017. "Performance improvement of a direct carbon solid oxide fuel cell system by combining with a Stirling cycle," Energy, Elsevier, vol. 140(P1), pages 979-987.
    4. Guk, Erdogan & Kim, Jung-Sik & Ranaweera, Manoj & Venkatesan, Vijay & Jackson, Lisa, 2018. "In-situ monitoring of temperature distribution in operating solid oxide fuel cell cathode using proprietary sensory techniques versus commercial thermocouples," Applied Energy, Elsevier, vol. 230(C), pages 551-562.
    5. Piadehrouhi, Forough & Ghorbani, Bahram & Miansari, Mehdi & Mehrpooya, Mehdi, 2019. "Development of a new integrated structure for simultaneous generation of power and liquid carbon dioxide using solar dish collectors," Energy, Elsevier, vol. 179(C), pages 938-959.
    6. Chen, Xiaohang & Wang, Yuan & Zhao, Yingru & Zhou, Yinghui, 2016. "A study of double functions and load matching of a phosphoric acid fuel cell/heat-driven refrigerator hybrid system," Energy, Elsevier, vol. 101(C), pages 359-365.
    7. Xu, Qidong & Xia, Lingchao & He, Qijiao & Guo, Zengjia & Ni, Meng, 2021. "Thermo-electrochemical modelling of high temperature methanol-fuelled solid oxide fuel cells," Applied Energy, Elsevier, vol. 291(C).
    8. Xu, Haoran & Chen, Bin & Tan, Peng & Cai, Weizi & He, Wei & Farrusseng, David & Ni, Meng, 2018. "Modeling of all porous solid oxide fuel cells," Applied Energy, Elsevier, vol. 219(C), pages 105-113.
    9. Wu, Zhen & Tan, Peng & Chen, Bin & Cai, Weizi & Chen, Meina & Xu, Xiaoming & Zhang, Zaoxiao & Ni, Meng, 2019. "Dynamic modeling and operation strategy of an NG-fueled SOFC-WGS-TSA-PEMFC hybrid energy conversion system for fuel cell vehicle by using MATLAB/SIMULINK," Energy, Elsevier, vol. 175(C), pages 567-579.
    10. Liang, Qi & He, Ya-Ling & Ren, Qinlong & Zhou, Yi-Peng & Xie, Tao, 2018. "A detailed study on phonon transport in thin silicon membranes with phononic crystal nanostructures," Applied Energy, Elsevier, vol. 227(C), pages 731-741.
    11. Chen, Qianyang & Qiu, Qianyuan & Yan, Xiaomin & Zhou, Mingyang & Zhang, Yapeng & Liu, Zhijun & Cai, Weizi & Wang, Wei & Liu, Jiang, 2020. "A compact and seal-less direct carbon solid oxide fuel cell stack stepping into practical application," Applied Energy, Elsevier, vol. 278(C).
    12. Ma, Rui & Liu, Chen & Breaz, Elena & Briois, Pascal & Gao, Fei, 2018. "Numerical stiffness study of multi-physical solid oxide fuel cell model for real-time simulation applications," Applied Energy, Elsevier, vol. 226(C), pages 570-581.
    13. Xu, Haoran & Maroto-Valer, M. Mercedes & Ni, Meng & Cao, Jun & Xuan, Jin, 2019. "Low carbon fuel production from combined solid oxide CO2 co-electrolysis and Fischer-Tropsch synthesis system: A modelling study," Applied Energy, Elsevier, vol. 242(C), pages 911-918.
    14. Xu, Haoran & Chen, Bin & Tan, Peng & Sun, Qiong & Maroto-Valer, M. Mercedes & Ni, Meng, 2019. "Modelling of a hybrid system for on-site power generation from solar fuels," Applied Energy, Elsevier, vol. 240(C), pages 709-718.
    15. Wu, Sijie & Zhang, Houcheng & Ni, Meng, 2016. "Performance assessment of a hybrid system integrating a molten carbonate fuel cell and a thermoelectric generator," Energy, Elsevier, vol. 112(C), pages 520-527.
    16. Kong, Wei & Han, Zhen & Lu, Siyu & Ni, Meng, 2021. "A simple but effective design to enhance the performance and durability of direct carbon solid oxide fuel cells," Applied Energy, Elsevier, vol. 287(C).
    17. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2021. "Thermal energy recovery of molten carbonate fuel cells by thermally regenerative electrochemical cycles," Energy, Elsevier, vol. 227(C).
    18. Rahmad Syah & Afshin Davarpanah & Mahyuddin K. M. Nasution & Faisal Amri Tanjung & Meysam Majidi Nezhad & Mehdi Nesaht, 2021. "A Comprehensive Thermoeconomic Evaluation and Multi-Criteria Optimization of a Combined MCFC/TEG System," Sustainability, MDPI, vol. 13(23), pages 1-29, November.
    19. Zhang, Xin & Cai, Ling & Liao, Tianjun & Zhou, Yinghui & Zhao, Yingru & Chen, Jincan, 2018. "Exploiting the waste heat from an alkaline fuel cell via electrochemical cycles," Energy, Elsevier, vol. 142(C), pages 983-990.
    20. Xu, Liangfei & Fang, Chuan & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2018. "Nonlinear dynamic mechanism modeling of a polymer electrolyte membrane fuel cell with dead-ended anode considering mass transport and actuator properties," Applied Energy, Elsevier, vol. 230(C), pages 106-121.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:226:y:2018:i:c:p:881-890. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.