IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v60y2013icp125-128.html
   My bibliography  Save this article

Energy and economic implications of anaerobic digestion pasteurisation regulations in Ireland

Author

Listed:
  • Coultry, James
  • Walsh, Eilín
  • McDonnell, Kevin P.

Abstract

The use of anaerobic digestion for the treatment of organic wastes is spreading throughout Europe. A number of restrictions on organic wastes which can be treated in anaerobic digestion facilities and the subsequent handling of the digested material are specified in European legislation. Regulation 1774/2002/EC as amended states that after reduction the material must be heated to either 70 °C or 90 °C for a minimum of 60 min. An alternative Irish national standard of 60 °C for 48 h twice has been introduced in place of the EU standard. Anaerobic digestion systems are successful only if they produce a significant energy output. The aim of this research was therefore to examine both the EU and Irish national standards as well as a number of alternative treatment scenarios to determine their respective pasteurisation efficiency and energetic requirement. Post-digestion pasteurisation above 60 °C was found to satisfactorily remove all viable Escherichia coli bacteria from the test feedstock. It was determined that the most energy and economically efficient heat treatments were 60 °C for 1 h, 70 °C for 1 h (EU standard), and 80 °C for 30 min. The Irish national standard was found to be prohibitively energy inefficient and expensive.

Suggested Citation

  • Coultry, James & Walsh, Eilín & McDonnell, Kevin P., 2013. "Energy and economic implications of anaerobic digestion pasteurisation regulations in Ireland," Energy, Elsevier, vol. 60(C), pages 125-128.
  • Handle: RePEc:eee:energy:v:60:y:2013:i:c:p:125-128
    DOI: 10.1016/j.energy.2013.07.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213006658
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.07.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kythreotou, Nicoletta & Tassou, Savvas A. & Florides, Georgios, 2012. "An assessment of the biomass potential of Cyprus for energy production," Energy, Elsevier, vol. 47(1), pages 253-261.
    2. Akbulut, Abdullah, 2012. "Techno-economic analysis of electricity and heat generation from farm-scale biogas plant: Çiçekdağı case study," Energy, Elsevier, vol. 44(1), pages 381-390.
    3. Goulding, D. & Power, N., 2013. "Which is the preferable biogas utilisation technology for anaerobic digestion of agricultural crops in Ireland: Biogas to CHP or biomethane as a transport fuel?," Renewable Energy, Elsevier, vol. 53(C), pages 121-131.
    4. Gong, Wei-jia & Liang, Heng & Li, Wen-zhe & Wang, Zhen-zhen, 2011. "Selection and evaluation of biofilm carrier in anaerobic digestion treatment of cattle manure," Energy, Elsevier, vol. 36(5), pages 3572-3578.
    5. Abbasi, Tasneem & Tauseef, S.M. & Abbasi, S.A., 2012. "Anaerobic digestion for global warming control and energy generation—An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3228-3242.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grim, Johanna & Malmros, Peter & Schnürer, Anna & Nordberg, Åke, 2015. "Comparison of pasteurization and integrated thermophilic sanitation at a full-scale biogas plant – Heat demand and biogas production," Energy, Elsevier, vol. 79(C), pages 419-427.
    2. Li, Huan & Jin, Chang & Zhang, Zhanying & O'Hara, Ian & Mundree, Sagadevan, 2017. "Environmental and economic life cycle assessment of energy recovery from sewage sludge through different anaerobic digestion pathways," Energy, Elsevier, vol. 126(C), pages 649-657.
    3. Wu, Li-Jie & Qin, Yu & Hojo, Toshimasa & Li, Yu-You, 2015. "Upgrading of anaerobic digestion of waste activated sludge by temperature-phased process with recycle," Energy, Elsevier, vol. 87(C), pages 381-389.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Spyridon Achinas & Demi Martherus & Janneke Krooneman & Gerrit Jan Willem Euverink, 2019. "Preliminary Assessment of a Biogas-Based Power Plant from Organic Waste in the North Netherlands," Energies, MDPI, vol. 12(21), pages 1-15, October.
    2. Theofanous, Elisavet & Kythreotou, Nicoletta & Panayiotou, Gregoris & Florides, Georgios & Vyrides, Ioannis, 2014. "Energy production from piggery waste using anaerobic digestion: Current status and potential in Cyprus," Renewable Energy, Elsevier, vol. 71(C), pages 263-270.
    3. Bhatnagar, N. & Ryan, D. & Murphy, R. & Enright, A.M., 2022. "A comprehensive review of green policy, anaerobic digestion of animal manure and chicken litter feedstock potential – Global and Irish perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    4. Achinas, Spyridon & Willem Euverink, Gerrit Jan, 2020. "Rambling facets of manure-based biogas production in Europe: A briefing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. Patrizio, P. & Leduc, S. & Chinese, D. & Kraxner, F., 2017. "Internalizing the external costs of biogas supply chains in the Italian energy sector," Energy, Elsevier, vol. 125(C), pages 85-96.
    6. Psarros, Georgios N. & Papathanassiou, Stavros A., 2023. "Generation scheduling in island systems with variable renewable energy sources: A literature review," Renewable Energy, Elsevier, vol. 205(C), pages 1105-1124.
    7. Yao, Yiqing & Sheng, Hongmei & Luo, Yang & He, Mulan & Li, Xiangkai & Zhang, Hua & He, Wenliang & An, Lizhe, 2014. "Optimization of anaerobic co-digestion of Solidago canadensis L. biomass and cattle slurry," Energy, Elsevier, vol. 78(C), pages 122-127.
    8. Avaci, Angelica Buzinaro & Melegari de Souza, Samuel Nelson & Werncke, Ivan & Chaves, Luiz Inácio, 2013. "Financial economic scenario for the microgeneration of electric energy from swine culture-originated biogas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 272-276.
    9. Igliński, Bartłomiej & Buczkowski, Roman & Iglińska, Anna & Cichosz, Marcin & Piechota, Grzegorz & Kujawski, Wojciech, 2012. "Agricultural biogas plants in Poland: Investment process, economical and environmental aspects, biogas potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4890-4900.
    10. Lijó, Lucía & González-García, Sara & Bacenetti, Jacopo & Moreira, Maria Teresa, 2017. "The environmental effect of substituting energy crops for food waste as feedstock for biogas production," Energy, Elsevier, vol. 137(C), pages 1130-1143.
    11. Mavrotas, George & Gakis, Nikos & Skoulaxinou, Sotiria & Katsouros, Vassilis & Georgopoulou, Elena, 2015. "Municipal solid waste management and energy production: Consideration of external cost through multi-objective optimization and its effect on waste-to-energy solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1205-1222.
    12. Amina Mohamed Ali & Md Alam Zahangir & Fatouma Mohamed Abdoul-Latif & Mohammed Saedi Jami & Jalludin Mohamed & Tarik Ainane, 2023. "Hydrolysis of Food Waste with Immobilized Biofilm as a Pretreatment Method for the Enhancement of Biogas Production," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    13. Kythreotou, Nicoletta & Tassou, Savvas A. & Florides, Georgios, 2012. "An assessment of the biomass potential of Cyprus for energy production," Energy, Elsevier, vol. 47(1), pages 253-261.
    14. Matheri, Anthony Njuguna & Sethunya, Vuiswa Lucia & Belaid, Mohamed & Muzenda, Edison, 2018. "Analysis of the biogas productivity from dry anaerobic digestion of organic fraction of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2328-2334.
    15. Petrollese, Mario & Cocco, Daniele, 2020. "Techno-economic assessment of hybrid CSP-biogas power plants," Renewable Energy, Elsevier, vol. 155(C), pages 420-431.
    16. Maghanaki, M. Mohammadi & Ghobadian, B. & Najafi, G. & Galogah, R. Janzadeh, 2013. "Potential of biogas production in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 702-714.
    17. Giovanni Gadaleta & Sabino De Gisi & Michele Notarnicola, 2021. "Feasibility Analysis on the Adoption of Decentralized Anaerobic Co-Digestion for the Treatment of Municipal Organic Waste with Energy Recovery in Urban Districts of Metropolitan Areas," IJERPH, MDPI, vol. 18(4), pages 1-17, February.
    18. Krystian Butlewski, 2022. "Concept for Biomass and Organic Waste Refinery Plants Based on the Locally Available Organic Materials in Rural Areas of Poland," Energies, MDPI, vol. 15(9), pages 1-19, May.
    19. O'Connor, S. & Ehimen, E. & Pillai, S.C. & Black, A. & Tormey, D. & Bartlett, J., 2021. "Biogas production from small-scale anaerobic digestion plants on European farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    20. Jiang, Y. & Xie, S.H. & Dennehy, C. & Lawlor, P.G. & Hu, Z.H. & Wu, G.X. & Zhan, X.M. & Gardiner, G.E., 2020. "Inactivation of pathogens in anaerobic digestion systems for converting biowastes to bioenergy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:60:y:2013:i:c:p:125-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.