IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v9y2018i5d10.1007_s13198-018-0726-9.html
   My bibliography  Save this article

Fault diagnosis for machinery based on feature extraction and general regression neural network

Author

Listed:
  • Haiping Li

    (Mechanical Engineering College)

  • Jianmin Zhao

    (Mechanical Engineering College)

  • Xianglong Ni

    (Mechanical Engineering College)

  • Xinghui Zhang

    (Mechanical Engineering College)

Abstract

Fault diagnosis for the maintenance of machinery is more difficult since it becomes more precise, automatic and efficient. To tackle this problem, a new feature extraction method for signal processing is developed and a general regression neural network (GRNN)—based method is proposed in this paper. Features are extracted from vibration signals that collected from mechanical systems and a feature selection method based on Euclidean distance technique (EDT) is applied. Then, the selected features are processed by the fault characteristic frequencies of mechanical components. And a part of processed data is as train samples and the others as test samples. Finally, the samples are inputted to GRNN to train and verify the model. The proposed method is applied as a fault diagnosis method for both planetary gearbox and bearings datasets, and the performance of it is validated by compared to such methods as radial basis function neural networks (RBFNN), probabilistic neural network (PNN) and a combination model (EMD–EDT). The experimental results show that the GRNN-based method has an advantage over other similar approaches.

Suggested Citation

  • Haiping Li & Jianmin Zhao & Xianglong Ni & Xinghui Zhang, 2018. "Fault diagnosis for machinery based on feature extraction and general regression neural network," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(5), pages 1034-1046, October.
  • Handle: RePEc:spr:ijsaem:v:9:y:2018:i:5:d:10.1007_s13198-018-0726-9
    DOI: 10.1007/s13198-018-0726-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-018-0726-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-018-0726-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Yonghua & Tang, Baoping & Qin, Yi & Liu, Wenyi, 2011. "Feature extraction method of wind turbine based on adaptive Morlet wavelet and SVD," Renewable Energy, Elsevier, vol. 36(8), pages 2146-2153.
    2. Chen Lu & Yang Wang & Minvydas Ragulskis & Yujie Cheng, 2016. "Fault Diagnosis for Rotating Machinery: A Method based on Image Processing," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-22, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaowen Wang & Ying Ma & Wen Li, 2021. "The Prediction of Gold Futures Prices at the Shanghai Futures Exchange Based on the MEEMD-CS-Elman Model," SAGE Open, , vol. 11(1), pages 21582440211, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chunming Wu & Zhou Zeng, 2021. "A fault diagnosis method based on Auxiliary Classifier Generative Adversarial Network for rolling bearing," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-21, March.
    2. Xueli An & Dongxiang Jiang, 2014. "Bearing fault diagnosis of wind turbine based on intrinsic time-scale decomposition frequency spectrum," Journal of Risk and Reliability, , vol. 228(6), pages 558-566, December.
    3. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    4. He, Guolin & Ding, Kang & Li, Weihua & Jiao, Xintao, 2016. "A novel order tracking method for wind turbine planetary gearbox vibration analysis based on discrete spectrum correction technique," Renewable Energy, Elsevier, vol. 87(P1), pages 364-375.
    5. Hu, Aijun & Yan, Xiaoan & Xiang, Ling, 2015. "A new wind turbine fault diagnosis method based on ensemble intrinsic time-scale decomposition and WPT-fractal dimension," Renewable Energy, Elsevier, vol. 83(C), pages 767-778.
    6. Kong, Yun & Wang, Tianyang & Chu, Fulei, 2019. "Meshing frequency modulation assisted empirical wavelet transform for fault diagnosis of wind turbine planetary ring gear," Renewable Energy, Elsevier, vol. 132(C), pages 1373-1388.
    7. Chang, Tian-Pau & Liu, Feng-Jiao & Ko, Hong-Hsi & Huang, Ming-Chao, 2017. "Oscillation characteristic study of wind speed, global solar radiation and air temperature using wavelet analysis," Applied Energy, Elsevier, vol. 190(C), pages 650-657.
    8. Zhang, Yu & Lu, Wenxiu & Chu, Fulei, 2017. "Planet gear fault localization for wind turbine gearbox using acoustic emission signals," Renewable Energy, Elsevier, vol. 109(C), pages 449-460.
    9. Zia Ullah & Bilal Ahmad Lodhi & Jin Hur, 2020. "Detection and Identification of Demagnetization and Bearing Faults in PMSM Using Transfer Learning-Based VGG," Energies, MDPI, vol. 13(15), pages 1-17, July.
    10. Salcedo-Sanz, S. & Cornejo-Bueno, L. & Prieto, L. & Paredes, D. & García-Herrera, R., 2018. "Feature selection in machine learning prediction systems for renewable energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 728-741.
    11. Lixiao Cao & Zheng Qian & Hamid Zareipour & David Wood & Ehsan Mollasalehi & Shuangshu Tian & Yan Pei, 2018. "Prediction of Remaining Useful Life of Wind Turbine Bearings under Non-Stationary Operating Conditions," Energies, MDPI, vol. 11(12), pages 1-20, November.
    12. Feng, Zhipeng & Liang, Ming & Zhang, Yi & Hou, Shumin, 2012. "Fault diagnosis for wind turbine planetary gearboxes via demodulation analysis based on ensemble empirical mode decomposition and energy separation," Renewable Energy, Elsevier, vol. 47(C), pages 112-126.
    13. Wang, Jianzhou & Song, Yiliao & Liu, Feng & Hou, Ru, 2016. "Analysis and application of forecasting models in wind power integration: A review of multi-step-ahead wind speed forecasting models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 960-981.
    14. Khazaee, Meghdad & Derian, Pierre & Mouraud, Anthony, 2022. "A comprehensive study on Structural Health Monitoring (SHM) of wind turbine blades by instrumenting tower using machine learning methods," Renewable Energy, Elsevier, vol. 199(C), pages 1568-1579.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:9:y:2018:i:5:d:10.1007_s13198-018-0726-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.