IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i4p2595-2630d35349.html
   My bibliography  Save this article

Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges

Author

Listed:
  • Pierre Tchakoua

    (Department of Applied Sciences, University of Quebec, Chicoutimi, QC G7H 2B1, Canada
    School of Engineering, University of Quebec, Rouyn-Noranda, QC J9X 5E4, Canada)

  • René Wamkeue

    (Department of Applied Sciences, University of Quebec, Chicoutimi, QC G7H 2B1, Canada
    School of Engineering, University of Quebec, Rouyn-Noranda, QC J9X 5E4, Canada)

  • Mohand Ouhrouche

    (Department of Applied Sciences, University of Quebec, Chicoutimi, QC G7H 2B1, Canada)

  • Fouad Slaoui-Hasnaoui

    (School of Engineering, University of Quebec, Rouyn-Noranda, QC J9X 5E4, Canada)

  • Tommy Andy Tameghe

    (Department of Applied Sciences, University of Quebec, Chicoutimi, QC G7H 2B1, Canada
    School of Engineering, University of Quebec, Rouyn-Noranda, QC J9X 5E4, Canada)

  • Gabriel Ekemb

    (Department of Applied Sciences, University of Quebec, Chicoutimi, QC G7H 2B1, Canada
    School of Engineering, University of Quebec, Rouyn-Noranda, QC J9X 5E4, Canada)

Abstract

As the demand for wind energy continues to grow at exponential rates, reducing operation and maintenance (OM) costs and improving reliability have become top priorities in wind turbine (WT) maintenance strategies. In addition to the development of more highly evolved WT designs intended to improve availability, the application of reliable and cost-effective condition-monitoring (CM) techniques offers an efficient approach to achieve this goal. This paper provides a general review and classification of wind turbine condition monitoring (WTCM) methods and techniques with a focus on trends and future challenges. After highlighting the relevant CM, diagnosis, and maintenance analysis, this work outlines the relationship between these concepts and related theories, and examines new trends and future challenges in the WTCM industry. Interesting insights from this research are used to point out strengths and weaknesses in today’s WTCM industry and define research priorities needed for the industry to meet the challenges in wind industry technological evolution and market growth.

Suggested Citation

  • Pierre Tchakoua & René Wamkeue & Mohand Ouhrouche & Fouad Slaoui-Hasnaoui & Tommy Andy Tameghe & Gabriel Ekemb, 2014. "Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges," Energies, MDPI, vol. 7(4), pages 1-36, April.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:4:p:2595-2630:d:35349
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/4/2595/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/4/2595/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schubel, P.J. & Crossley, R.J. & Boateng, E.K.G. & Hutchinson, J.R., 2013. "Review of structural health and cure monitoring techniques for large wind turbine blades," Renewable Energy, Elsevier, vol. 51(C), pages 113-123.
    2. Wallace R. Blischke & M. Rezaul Karim & D. N. Prabhakar Murthy, 2011. "Warranty Data Collection and Analysis," Springer Series in Reliability Engineering, Springer, number 978-0-85729-647-4, March.
    3. Guo, Haitao & Watson, Simon & Tavner, Peter & Xiang, Jiangping, 2009. "Reliability analysis for wind turbines with incomplete failure data collected from after the date of initial installation," Reliability Engineering and System Safety, Elsevier, vol. 94(6), pages 1057-1063.
    4. Hameed, Z. & Ahn, S.H. & Cho, Y.M., 2010. "Practical aspects of a condition monitoring system for a wind turbine with emphasis on its design, system architecture, testing and installation," Renewable Energy, Elsevier, vol. 35(5), pages 879-894.
    5. Liu, Wenyi & Tang, Baoping & Jiang, Yonghua, 2010. "Status and problems of wind turbine structural health monitoring techniques in China," Renewable Energy, Elsevier, vol. 35(7), pages 1414-1418.
    6. Hameed, Z. & Hong, Y.S. & Cho, Y.M. & Ahn, S.H. & Song, C.K., 2009. "Condition monitoring and fault detection of wind turbines and related algorithms: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 1-39, January.
    7. Soua, Slim & Van Lieshout, Paul & Perera, Asanka & Gan, Tat-Hean & Bridge, Bryan, 2013. "Determination of the combined vibrational and acoustic emission signature of a wind turbine gearbox and generator shaft in service as a pre-requisite for effective condition monitoring," Renewable Energy, Elsevier, vol. 51(C), pages 175-181.
    8. García Márquez, Fausto Pedro & Tobias, Andrew Mark & Pinar Pérez, Jesús María & Papaelias, Mayorkinos, 2012. "Condition monitoring of wind turbines: Techniques and methods," Renewable Energy, Elsevier, vol. 46(C), pages 169-178.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    2. Beganovic, Nejra & Söffker, Dirk, 2016. "Structural health management utilization for lifetime prognosis and advanced control strategy deployment of wind turbines: An overview and outlook concerning actual methods, tools, and obtained result," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 68-83.
    3. Ruiz de la Hermosa González-Carrato, Raúl & García Márquez, Fausto Pedro & Dimlaye, Vichaar, 2015. "Maintenance management of wind turbines structures via MFCs and wavelet transforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 472-482.
    4. Igba, Joel & Alemzadeh, Kazem & Durugbo, Christopher & Henningsen, Keld, 2015. "Performance assessment of wind turbine gearboxes using in-service data: Current approaches and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 144-159.
    5. Habibi, Hamed & Howard, Ian & Simani, Silvio, 2019. "Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review," Renewable Energy, Elsevier, vol. 135(C), pages 877-896.
    6. Zhou, H.F. & Zheng, J.F. & Xie, Z.L. & Lu, L.J. & Ni, Y.Q. & Ko, J.M., 2017. "Temperature effects on vision measurement system in long-term continuous monitoring of displacement," Renewable Energy, Elsevier, vol. 114(PB), pages 968-983.
    7. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    8. Tian, Zhigang & Jin, Tongdan & Wu, Bairong & Ding, Fangfang, 2011. "Condition based maintenance optimization for wind power generation systems under continuous monitoring," Renewable Energy, Elsevier, vol. 36(5), pages 1502-1509.
    9. Masoud Asgarpour & John Dalsgaard Sørensen, 2018. "Bayesian Based Diagnostic Model for Condition Based Maintenance of Offshore Wind Farms," Energies, MDPI, vol. 11(2), pages 1-17, January.
    10. Mérigaud, Alexis & Ringwood, John V., 2016. "Condition-based maintenance methods for marine renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 53-78.
    11. Igba, Joel & Alemzadeh, Kazem & Durugbo, Christopher & Eiriksson, Egill Thor, 2016. "Analysing RMS and peak values of vibration signals for condition monitoring of wind turbine gearboxes," Renewable Energy, Elsevier, vol. 91(C), pages 90-106.
    12. Liu, W.Y. & Tang, B.P. & Han, J.G. & Lu, X.N. & Hu, N.N. & He, Z.Z., 2015. "The structure healthy condition monitoring and fault diagnosis methods in wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 466-472.
    13. Ruiming, Fang & Minling, Wu & xinhua, Guo & Rongyan, Shang & Pengfei, Shao, 2020. "Identifying early defects of wind turbine based on SCADA data and dynamical network marker," Renewable Energy, Elsevier, vol. 154(C), pages 625-635.
    14. Alberto Pliego Marugán & Fausto Pedro García Márquez & Jesús María Pinar Pérez, 2016. "Optimal Maintenance Management of Offshore Wind Farms," Energies, MDPI, vol. 9(1), pages 1-20, January.
    15. Giovanni Rinaldi & Philipp R. Thies & Lars Johanning, 2021. "Current Status and Future Trends in the Operation and Maintenance of Offshore Wind Turbines: A Review," Energies, MDPI, vol. 14(9), pages 1-28, April.
    16. Yang, Ruizhen & He, Yunze & Zhang, Hong, 2016. "Progress and trends in nondestructive testing and evaluation for wind turbine composite blade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1225-1250.
    17. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    18. Unai Elosegui & Igor Egana & Alain Ulazia & Gabriel Ibarra-Berastegi, 2018. "Pitch Angle Misalignment Correction Based on Benchmarking and Laser Scanner Measurement in Wind Farms," Energies, MDPI, vol. 11(12), pages 1-20, December.
    19. Moynihan, Bridget & Moaveni, Babak & Liberatore, Sauro & Hines, Eric, 2022. "Estimation of blade forces in wind turbines using blade root strain measurements with OpenFAST verification," Renewable Energy, Elsevier, vol. 184(C), pages 662-676.
    20. Enevoldsen, Peter, 2016. "Onshore wind energy in Northern European forests: Reviewing the risks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1251-1262.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:4:p:2595-2630:d:35349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.