IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipas0960148124015647.html
   My bibliography  Save this article

A GIS-based assessment of the carbon emission reduction potential of the solar-enhanced char-cycling biomass pyrolysis process in China

Author

Listed:
  • Li, Ruochen
  • Meng, Tianxin
  • Song, Gongxiang
  • Huang, Dexin
  • Hu, Song
  • Jiang, Long
  • Xu, Jun
  • Wang, Yi
  • Su, Sheng
  • Xiang, Jun

Abstract

Bioenergy and solar energy are the two widely used renewable energies, which have great potential to satisfy the global energy demand. Solar enhanced char-cycling biomass pyrolysis (SCCP) was proposed to integrate bioenergy and solar energy, could be used to make bioenergy fully carbon-negative. A geographical information system (GIS) based method was used to assess the GHG reduction potential and biofuel production potential of SCCP in China. Existing datasets were used to obtain geographical potential and biomass resource amount. Process simulation was conducted to obtain the technical data. The geographical potential results showed that with a DNI (direct normal irradiance) threshold of 1400 kWh/m2, the national suitable area for SCCP plant construction was 3.25 % of the total national area, the total convertible biofuel potential ranges from 1.86E+06 to 1.94E+06 GWh with different concentrating solar technologies. When considering biochar sequestration, the GHG emission reduction potential increased further, the total GHG emission reduction potential increased from 13.97 Mt CO2 eq to 15.42 Mt CO2 eq. Notably, Yunnan has the highest GHG emission reduction potential per unit of energy when running the pyrolysis process with solar energy, which was −8.58 g CO2 eq/kWh. The results revealed that the SCCP process could further decarbonize biofuel production in China.

Suggested Citation

  • Li, Ruochen & Meng, Tianxin & Song, Gongxiang & Huang, Dexin & Hu, Song & Jiang, Long & Xu, Jun & Wang, Yi & Su, Sheng & Xiang, Jun, 2024. "A GIS-based assessment of the carbon emission reduction potential of the solar-enhanced char-cycling biomass pyrolysis process in China," Renewable Energy, Elsevier, vol. 237(PA).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124015647
    DOI: 10.1016/j.renene.2024.121496
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124015647
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121496?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124015647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.