IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v249y2019icp276-285.html
   My bibliography  Save this article

Process intensification of biomass fast pyrolysis through autothermal operation of a fluidized bed reactor

Author

Listed:
  • Polin, Joseph P.
  • Peterson, Chad A.
  • Whitmer, Lysle E.
  • Smith, Ryan G.
  • Brown, Robert C.

Abstract

Heat transfer is the bottleneck to fast pyrolysis of biomass. Although the enthalpy for pyrolysis of biomass is relatively small operation at temperatures around 500 °C constrains heat carrier selection to inert gases and granular media that can sustain only modest thermal fluxes in practical pyrolysis systems. With heat transfer controlling the rate of pyrolysis, reactor capacity only scales as the square of reactor diameter and does not benefit from economies of scale in building larger reactors. We have eliminated this heat transfer bottleneck by replacing it with partial oxidation of pyrolysis products to provide the enthalpy for pyrolysis in a fluidized bed reactor, a process that can be described as autothermal pyrolysis. The oxygen-to-biomass equivalence ratio depends upon the kind of biomass being pyrolyzed and the level of parasitic heat losses from the reactor, but under conditions that simulate adiabatic operation, equivalence ratios are around 0.10, compared to 0.20 or higher for autothermal gasifiers. At this low equivalence ratio, there was no significant loss in bio-oil yield when operating the reactor autothermally (64.8 wt%) as compared to conventional pyrolysis (64.4 wt%). Carbon balances indicate that less valuable pyrolysis products (char and aqueous, bio-oil light ends) are consumed via partial oxidative reactions to provide the enthalpy for pyrolysis. While the carbon yields of char and bio-oil light ends decreased by 25.0% and 21.3%, respectively, the most valuable pyrolysis product (bio-oil heavy ends) only decreased 8.0%.

Suggested Citation

  • Polin, Joseph P. & Peterson, Chad A. & Whitmer, Lysle E. & Smith, Ryan G. & Brown, Robert C., 2019. "Process intensification of biomass fast pyrolysis through autothermal operation of a fluidized bed reactor," Applied Energy, Elsevier, vol. 249(C), pages 276-285.
  • Handle: RePEc:eee:appene:v:249:y:2019:i:c:p:276-285
    DOI: 10.1016/j.apenergy.2019.04.154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919308141
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.04.154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Campuzano, Felipe & Brown, Robert C. & Martínez, Juan Daniel, 2019. "Auger reactors for pyrolysis of biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 372-409.
    2. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao Chen & Xiaoke Ku & Jianzhong Lin & Henrik Ström, 2020. "CFD-DEM Simulation of Biomass Pyrolysis in Fluidized-Bed Reactor with a Multistep Kinetic Scheme," Energies, MDPI, vol. 13(20), pages 1-19, October.
    2. Xie, Wen & Su, Jing & Zhang, Xiangkun & Li, Tan & Wang, Cong & Yuan, Xiangzhou & Wang, Kaige, 2023. "Investigating kinetic behavior and reaction mechanism on autothermal pyrolysis of polyethylene plastic," Energy, Elsevier, vol. 269(C).
    3. Branca, Carmen & Galgano, Antonio & Di Blasi, Colomba, 2023. "Dynamics and products of potato crop residue conversion under a pyrolytic runaway regime - Influences of feedstock variability," Energy, Elsevier, vol. 276(C).
    4. Li, Bin & Song, Mengge & Xie, Xing & Wei, Juntao & Xu, Deliang & Ding, Kuan & Huang, Yong & Zhang, Shu & Hu, Xun & Zhang, Shihong & Liu, Dongjing, 2023. "Oxidative fast pyrolysis of biomass in a quartz tube fluidized bed reactor: Effect of oxygen equivalence ratio," Energy, Elsevier, vol. 270(C).
    5. Zhang, Xing & Wang, Kaige & Chen, Junhao & Zhu, Lingjun & Wang, Shurong, 2020. "Mild hydrogenation of bio-oil and its derived phenolic monomers over Pt–Ni bimetal-based catalysts," Applied Energy, Elsevier, vol. 275(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Yang, Yuhan & Wang, Tiancheng & Hu, Hongyun & Yao, Dingding & Zou, Chan & Xu, Kai & Li, Xian & Yao, Hong, 2021. "Influence of partial components removal on pyrolysis behavior of lignocellulosic biowaste in molten salts," Renewable Energy, Elsevier, vol. 180(C), pages 616-625.
    3. Ayub, Yousaf & Ren, Jingzheng & Shi, Tao & Shen, Weifeng & He, Chang, 2023. "Poultry litter valorization: Development and optimization of an electro-chemical and thermal tri-generation process using an extreme gradient boosting algorithm," Energy, Elsevier, vol. 263(PC).
    4. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    5. Ye, Lian & Zhang, Jianliang & Wang, Guangwei & Wang, Chen & Mao, Xiaoming & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Li, Jinhua & Wang, Chuan, 2023. "Feasibility analysis of plastic and biomass hydrochar for blast furnace injection," Energy, Elsevier, vol. 263(PD).
    6. Elhambakhsh, Abbas & Van Duc Long, Nguyen & Lamichhane, Pradeep & Hessel, Volker, 2023. "Recent progress and future directions in plasma-assisted biomass conversion to hydrogen," Renewable Energy, Elsevier, vol. 218(C).
    7. Hu, Hangli & Luo, Yanru & Zou, Jianfeng & Zhang, Shukai & Yellezuome, Dominic & Rahman, Md Maksudur & Li, Yingkai & Li, Chong & Cai, Junmeng, 2022. "Exploring aging kinetic mechanisms of bio-oil from biomass pyrolysis based on change in carbonyl content," Renewable Energy, Elsevier, vol. 199(C), pages 782-790.
    8. Zhao, Ming & Memon, Muhammad Zaki & Ji, Guozhao & Yang, Xiaoxiao & Vuppaladadiyam, Arun K. & Song, Yinqiang & Raheem, Abdul & Li, Jinhui & Wang, Wei & Zhou, Hui, 2020. "Alkali metal bifunctional catalyst-sorbents enabled biomass pyrolysis for enhanced hydrogen production," Renewable Energy, Elsevier, vol. 148(C), pages 168-175.
    9. Zang, Guiyan & Zhang, Jianan & Jia, Junxi & Lora, Electo Silva & Ratner, Albert, 2020. "Life cycle assessment of power-generation systems based on biomass integrated gasification combined cycles," Renewable Energy, Elsevier, vol. 149(C), pages 336-346.
    10. Alsulami, Radi A. & El-Sayed, Saad A. & Eltaher, Mohamed A. & Mohammad, Akram & Almitani, Khalid H. & Mostafa, Mohamed E., 2023. "Pyrolysis kinetics and thermal degradation characteristics of coffee, date seed, and prickly pear wastes and their blends," Renewable Energy, Elsevier, vol. 216(C).
    11. Sitek, Tomáš & Pospíšil, Jiří & Poláčik, Ján & Špiláček, Michal & Varbanov, Petar, 2019. "Fine combustion particles released during combustion of unit mass of beechwood," Renewable Energy, Elsevier, vol. 140(C), pages 390-396.
    12. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Juan García-Quezada & Ricardo Musule-Lagunes & José Angel Prieto-Ruíz & Daniel José Vega-Nieva & Artemio Carrillo-Parra, 2022. "Evaluation of Four Types of Kilns Used to Produce Charcoal from Several Tree Species in Mexico," Energies, MDPI, vol. 16(1), pages 1-22, December.
    14. Gupta, Shubhi & Gupta, Goutam Kishore & Mondal, Monoj Kumar, 2019. "Slow pyrolysis of chemically treated walnut shell for valuable products: Effect of process parameters and in-depth product analysis," Energy, Elsevier, vol. 181(C), pages 665-676.
    15. Adnan, Muflih A. & Hossain, Mohammad M. & Kibria, Md Golam, 2020. "Biomass upgrading to high-value chemicals via gasification and electrolysis: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1367-1379.
    16. Salvilla, John Nikko V. & Ofrasio, Bjorn Ivan G. & Rollon, Analiza P. & Manegdeg, Ferdinand G. & Abarca, Ralf Ruffel M. & de Luna, Mark Daniel G., 2020. "Synergistic co-pyrolysıs of polyolefin plastics with wood and agricultural wastes for biofuel production," Applied Energy, Elsevier, vol. 279(C).
    17. Lech Nowicki & Dorota Siuta & Maciej Markowski, 2020. "Pyrolysis of Rapeseed Oil Press Cake and Steam Gasification of Solid Residues," Energies, MDPI, vol. 13(17), pages 1-12, August.
    18. Radoslaw Slezak & Hilal Unyay & Szymon Szufa & Stanislaw Ledakowicz, 2023. "An Extensive Review and Comparison of Modern Biomass Reactors Torrefaction vs. Biomass Pyrolizers—Part 2," Energies, MDPI, vol. 16(5), pages 1-25, February.
    19. Ge, Shengbo & Yek, Peter Nai Yuh & Cheng, Yoke Wang & Xia, Changlei & Wan Mahari, Wan Adibah & Liew, Rock Keey & Peng, Wanxi & Yuan, Tong-Qi & Tabatabaei, Meisam & Aghbashlo, Mortaza & Sonne, Christia, 2021. "Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Ma, Liyang & Goldfarb, Jillian L. & Ma, Qiulin, 2022. "Enabling lower temperature pyrolysis with aqueous ionic liquid pretreatment as a sustainable approach to rice husk conversion to biofuels," Renewable Energy, Elsevier, vol. 198(C), pages 712-722.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:249:y:2019:i:c:p:276-285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.