IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p2250-2258.html
   My bibliography  Save this article

Batch pyrolysis of cotton stalks for evaluation of biochar energy potential

Author

Listed:
  • Al Afif, Rafat
  • Anayah, S. Sean
  • Pfeifer, Christoph

Abstract

The thermal cracking of cotton stalks (CS) through pyrolysis was undertaken using a laboratory scale batch pyrolysis reactor. The distribution of pyrolysis products were studied dependent on the final pyrolysis temperature which ranged from 300 to 800 °C by 100K intervals. The maximum biochar yield of 46.5% was obtained at 400 °C. As the pyrolysis process temperature increased, the solid char product yield decreased. The largest higher heating value (25.845 MJ kg−1) was obtained at 600 °C. All biochar samples produced between 500 and 700 °C had an energy densification ratio of 1.41, indicating a higher mass-energy density than the initial feedstock. A larger share of syngas and bio-oil were produced at higher temperatures, as estimated. Preferential selection of a char based on the energy yield would lead to a selection of the 400 °C product, while selection based on the energy densification ratio would be for a product obtained between 500 and 700 °C. An energy simulation was conducted which determined that the process is self-sustaining at and above 400 °C. Furthermore, the global energy potential was determined from CS pyrolysis, which was estimated at 380 PJ yr−1 could contribute to roughly 0.1% of the actual global total primary energy supply of 576 EJ yr−1.

Suggested Citation

  • Al Afif, Rafat & Anayah, S. Sean & Pfeifer, Christoph, 2020. "Batch pyrolysis of cotton stalks for evaluation of biochar energy potential," Renewable Energy, Elsevier, vol. 147(P1), pages 2250-2258.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:2250-2258
    DOI: 10.1016/j.renene.2019.09.146
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119314909
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.09.146?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johnson, James D. & Kiawu, James & MacDonald, Stephen & Meyer, Leslie A., 2012. "The World And United States Cotton Outlook," Agricultural Outlook Forum 2012 126441, United States Department of Agriculture, Agricultural Outlook Forum.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhongqi He & Dan C. Olk & Haile Tewolde & Hailin Zhang & Mark Shankle, 2019. "Carbohydrate and Amino Acid Profiles of Cotton Plant Biomass Products," Agriculture, MDPI, vol. 10(1), pages 1-14, December.
    2. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    3. Cueva Zepeda, Lolita & Griffin, Gregory & Shah, Kalpit & Al-Waili, Ibrahim & Parthasarathy, Rajarathinam, 2023. "Energy potential, flow characteristics and stability of water and alcohol-based rice-straw biochar slurry fuel," Renewable Energy, Elsevier, vol. 207(C), pages 60-72.
    4. Nugroho, Rusdan Aditya Aji & Alhikami, Akhmad Faruq & Wang, Wei-Cheng, 2023. "Thermal decomposition of polypropylene plastics through vacuum pyrolysis," Energy, Elsevier, vol. 277(C).
    5. Baghel, Paramjeet & Sakhiya, Anil Kumar & Kaushal, Priyanka, 2022. "Influence of temperature on slow pyrolysis of Prosopis Juliflora: An experimental and thermodynamic approach," Renewable Energy, Elsevier, vol. 185(C), pages 538-551.
    6. Liu, Tianyu & Wen, Chang & Li, Changkang & Yan, Kai & Li, Rui & Jing, Zhenqi & Zhang, Bohan & Ma, Jingjing, 2022. "Integrated water washing and carbonization pretreatment of typical herbaceous and woody biomass: Fuel properties, combustion behaviors, and techno-economic assessments," Renewable Energy, Elsevier, vol. 200(C), pages 218-233.
    7. Natalia Politaeva & Yulia Smyatskaya & Rafat Al Afif & Christoph Pfeifer & Liliya Mukhametova, 2020. "Development of Full-Cycle Utilization of Chlorella sorokiniana Microalgae Biomass for Environmental and Food Purposes," Energies, MDPI, vol. 13(10), pages 1-16, May.
    8. Al Afif, Rafat & Wendland, Martin & Amon, Thomas & Pfeifer, Christoph, 2020. "Supercritical carbon dioxide enhanced pre-treatment of cotton stalks for methane production," Energy, Elsevier, vol. 194(C).
    9. Meng, Fan & Rong, Guoqiang & Zhao, Ruiji & Chen, Bo & Xu, Xiaoyun & Qiu, Hao & Cao, Xinde & Zhao, Ling, 2024. "Incorporating biochar into fuels system of iron and steel industry: carbon emission reduction potential and economic analysis," Applied Energy, Elsevier, vol. 356(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joseph P. Janzen & Nathan P. Hendricks, 2020. "Are Farmers Made Whole by Trade Aid?," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 42(2), pages 205-226, June.
    2. Himanshu, Sushil Kumar & Ale, Srinivasulu & Bordovsky, James & Darapuneni, Murali, 2019. "Evaluation of crop-growth-stage-based deficit irrigation strategies for cotton production in the Southern High Plains," Agricultural Water Management, Elsevier, vol. 225(C).
    3. MacDonald, Stephen, 2014. "China's Cotton Policy: New Directions in 2014," Agricultural Outlook Forum 2014 168619, United States Department of Agriculture, Agricultural Outlook Forum.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:2250-2258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.