IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v236y2024ics0960148124015477.html
   My bibliography  Save this article

Simplified Polynomial-asymptotic-distribution Actuator Disc (SPAD) method for wind turbine wake simulation based on k-ϵ-fP turbulence model

Author

Listed:
  • Meng, Hang
  • Chen, Tao
  • Chen, Xiaodong
  • Ge, Mingwei
  • Han, Yunzhou
  • Liu, Yongqian

Abstract

In large wind farms, wake effect has a negative impact on the annual production of wind turbines. As a result, wind turbine wake simulation is important for wind farm micro-sitting to minimize power loss and maximize energy production. Coupled with Reynolds Averaged Navier–Stokes turbulence model, Simplified Uniform-distribution Actuator Disc method is the most widely-used rotor model for wake simulation in engineering practice. The conventional simplified uniform-distribution actuator disc models suffer discrepancies of wake velocity prediction compared with the measurements in the near wake region. The novelty of the current research is to propose a Simplified Polynomial-asymptotic-distribution Actuator Disc method based on k−ϵ−fP turbulence model for cylindrical actuator disc cell region with finite thickness, which is simple for implementation and improves the accuracy of wake simulation compared with conventional method. The proposed method conforms to momentum conservation and is as simple as conventional method because of its polynomial formulation and no requirement for aerodynamics data in Generalized Actuator Disc model. From the verification and validation cases, it can be found that the proposed model has better agreement with both high-fidelity actuator line model and the field test measurements from Lillgrund wind farm compared with conventional model. The proposed actuator disc model has the potential to be applied to the micrositting of large offshore wind farms in the future.

Suggested Citation

  • Meng, Hang & Chen, Tao & Chen, Xiaodong & Ge, Mingwei & Han, Yunzhou & Liu, Yongqian, 2024. "Simplified Polynomial-asymptotic-distribution Actuator Disc (SPAD) method for wind turbine wake simulation based on k-ϵ-fP turbulence model," Renewable Energy, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124015477
    DOI: 10.1016/j.renene.2024.121479
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124015477
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121479?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    2. Cai, Wei & Hu, Yang & Fang, Fang & Yao, Lujin & Liu, Jizhen, 2023. "Wind farm power production and fatigue load optimization based on dynamic partitioning and wake redirection of wind turbines," Applied Energy, Elsevier, vol. 339(C).
    3. Khan, Mehtab Ahmad & Javed, Adeel & Shakir, Sehar & Syed, Abdul Haseeb, 2021. "Optimization of a wind farm by coupled actuator disk and mesoscale models to mitigate neighboring wind farm wake interference from repowering perspective," Applied Energy, Elsevier, vol. 298(C).
    4. Neunaber, Ingrid & Hölling, Michael & Whale, Jonathan & Peinke, Joachim, 2021. "Comparison of the turbulence in the wakes of an actuator disc and a model wind turbine by higher order statistics: A wind tunnel study," Renewable Energy, Elsevier, vol. 179(C), pages 1650-1662.
    5. Fan, Shuanglong & Liu, Zhenqing, 2023. "Proposal of fully-coupled actuated disk model for wind turbine operation modeling in turbulent flow field due to complex topography," Energy, Elsevier, vol. 284(C).
    6. Sørensen, Jens Nørkær & Nilsson, Karl & Ivanell, Stefan & Asmuth, Henrik & Mikkelsen, Robert Flemming, 2020. "Analytical body forces in numerical actuator disc model of wind turbines," Renewable Energy, Elsevier, vol. 147(P1), pages 2259-2271.
    7. Castellani, Francesco & Vignaroli, Andrea, 2013. "An application of the actuator disc model for wind turbine wakes calculations," Applied Energy, Elsevier, vol. 101(C), pages 432-440.
    8. Arabgolarcheh, Alireza & Micallef, Daniel & Rezaeiha, Abdolrahim & Benini, Ernesto, 2023. "Modelling of two tandem floating offshore wind turbines using an actuator line model," Renewable Energy, Elsevier, vol. 216(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Xiaoxia & Chen, Yao & Xu, Shinai & Gao, Wei & Zhu, Xiaoxun & Sun, Haiying & Yang, Hongxing & Han, Zhonghe & Wang, Yu & Lu, Hao, 2022. "Comparative experimental investigation into wake characteristics of turbines in three wind farms areas with varying terrain complexity from LiDAR measurements," Applied Energy, Elsevier, vol. 307(C).
    2. Huanqiang, Zhang & Xiaoxia, Gao & Hongkun, Lu & Qiansheng, Zhao & Xiaoxun, Zhu & Yu, Wang & Fei, Zhao, 2024. "Investigation of a new 3D wake model of offshore floating wind turbines subjected to the coupling effects of wind and wave," Applied Energy, Elsevier, vol. 365(C).
    3. Zheng, Yidan & Liu, Huiwen & Chamorro, Leonardo P. & Zhao, Zhenzhou & Li, Ye & Zheng, Yuan & Tang, Kexin, 2023. "Impact of turbulence level on intermittent-like events in the wake of a model wind turbine," Renewable Energy, Elsevier, vol. 203(C), pages 45-55.
    4. Ge, Mingwei & Wu, Ying & Liu, Yongqian & Li, Qi, 2019. "A two-dimensional model based on the expansion of physical wake boundary for wind-turbine wakes," Applied Energy, Elsevier, vol. 233, pages 975-984.
    5. Tian, Sheng & Liu, Yongqian & Tian, Xinshou & Li, Baoliang & Chi, Yongning, 2024. "A wind farm control strategy for frequency regulation reserve: Optimize wake loss and frequency support capability," Renewable Energy, Elsevier, vol. 237(PB).
    6. Balakrishnan, Raj Kiran & Son, Eunkuk & Hur, Sung-ho, 2024. "Optimization of wind farm power output using wake redirection control," Renewable Energy, Elsevier, vol. 235(C).
    7. Xu, Zongyuan & Gao, Xiaoxia & Zhang, Huanqiang & Lv, Tao & Han, Zhonghe & Zhu, Xiaoxun & Wang, Yu, 2023. "Analysis of the anisotropy aerodynamic characteristics of downstream wind turbine considering the 3D wake expansion based on coupling method," Energy, Elsevier, vol. 263(PD).
    8. Brown, S.A. & Ransley, E.J. & Greaves, D.M., 2020. "Developing a coupled turbine thrust methodology for floating tidal stream concepts: Verification under prescribed motion," Renewable Energy, Elsevier, vol. 147(P1), pages 529-540.
    9. He, Yuhang & Han, Xingxing & Xu, Chang & Cheng, Zhe & Wang, Jincheng & Liu, Wei & Xu, Dong, 2023. "Sensitivity of simulated wind power under diverse spatial scales and multiple terrains using the weather research and forecasting model," Energy, Elsevier, vol. 285(C).
    10. Adam Zagubień & Katarzyna Wolniewicz & Jakub Szwochertowski, 2024. "Analysis of Wind Farm Productivity Taking Wake Loss into Account: Case Study," Energies, MDPI, vol. 17(23), pages 1-14, November.
    11. Kuichao Ma & Jiaxin Zou & Qingyang Fan & Xiaodong Wang & Wei Zhang & Wei Fan, 2024. "Wind Turbine Wake Regulation Method Coupling Actuator Model and Engineering Wake Model," Energies, MDPI, vol. 17(23), pages 1-19, November.
    12. Zhang, Xiaofeng & Wang, Qiang & Ye, Shitong & Luo, Kun & Fan, Jianren, 2024. "Efficient layout optimization of offshore wind farm based on load surrogate model and genetic algorithm," Energy, Elsevier, vol. 309(C).
    13. Ingrid Neunaber & Michael Hölling & Martin Obligado, 2022. "Wind Tunnel Study on the Tip Speed Ratio’s Impact on a Wind Turbine Wake Development," Energies, MDPI, vol. 15(22), pages 1-15, November.
    14. Duan, Guiyue & Gattari, Daniele & Porté-Agel, Fernando, 2025. "Theoretical and experimental study on power performance and wake characteristics of a floating wind turbine under pitch motion," Applied Energy, Elsevier, vol. 378(PA).
    15. Miller, Aaron & Chang, Byungik & Issa, Roy & Chen, Gerald, 2013. "Review of computer-aided numerical simulation in wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 122-134.
    16. Zhong, Hongmin & Du, Pingan & Tang, Fangning & Wang, Li, 2015. "Lagrangian dynamic large-eddy simulation of wind turbine near wakes combined with an actuator line method," Applied Energy, Elsevier, vol. 144(C), pages 224-233.
    17. Tu, Yu & Chen, Yaoran & Zhang, Kai & He, Ruiyang & Han, Zhaolong & Zhou, Dai, 2025. "A multi-fidelity framework for power prediction of wind farm under yaw misalignment," Applied Energy, Elsevier, vol. 377(PC).
    18. Dominguez, Favio & Achard, Jean-Luc & Zanette, Jerônimo & Corre, Christophe, 2016. "Fast power output prediction for a single row of ducted cross-flow water turbines using a BEM-RANS approach," Renewable Energy, Elsevier, vol. 89(C), pages 658-670.
    19. Rizwan Haider & Xin Li & Wei Shi & Zaibin Lin & Qing Xiao & Haisheng Zhao, 2024. "Review of Computational Fluid Dynamics in the Design of Floating Offshore Wind Turbines," Energies, MDPI, vol. 17(17), pages 1-37, August.
    20. Xiaomei Ma & Mengxue Li & Wenquan Li & Yongqian Liu, 2025. "Overview of Offshore Wind Power Technologies," Sustainability, MDPI, vol. 17(2), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124015477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.