Comparative experimental investigation into wake characteristics of turbines in three wind farms areas with varying terrain complexity from LiDAR measurements
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2021.118182
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kruyt, Bert & Lehning, Michael & Kahl, Annelen, 2017. "Potential contributions of wind power to a stable and highly renewable Swiss power supply," Applied Energy, Elsevier, vol. 192(C), pages 1-11.
- Fei, Zhao & Tengyuan, Wang & Xiaoxia, Gao & Haiying, Sun & Hongxing, Yang & Zhonghe, Han & Yu, Wang & Xiaoxun, Zhu, 2020. "Experimental study on wake interactions and performance of the turbines with different rotor-diameters in adjacent area of large-scale wind farm," Energy, Elsevier, vol. 199(C).
- Brogna, Roberto & Feng, Ju & Sørensen, Jens Nørkær & Shen, Wen Zhong & Porté-Agel, Fernando, 2020. "A new wake model and comparison of eight algorithms for layout optimization of wind farms in complex terrain," Applied Energy, Elsevier, vol. 259(C).
- Veisi, Amin Allah & Shafiei Mayam, Mohammad Hossein, 2017. "Effects of blade rotation direction in the wake region of two in-line turbines using Large Eddy Simulation," Applied Energy, Elsevier, vol. 197(C), pages 375-392.
- Meng, Hang & Lien, Fue-Sang & Li, Li, 2018. "Elastic actuator line modelling for wake-induced fatigue analysis of horizontal axis wind turbine blade," Renewable Energy, Elsevier, vol. 116(PA), pages 423-437.
- Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2014. "Study on offshore wind power potential and wind farm optimization in Hong Kong," Applied Energy, Elsevier, vol. 130(C), pages 519-531.
- Sun, Haiying & Yang, Hongxing, 2020. "Numerical investigation of the average wind speed of a single wind turbine and development of a novel three-dimensional multiple wind turbine wake model," Renewable Energy, Elsevier, vol. 147(P1), pages 192-203.
- Shah Rukh Abbas & Syed Ali Abbas Kazmi & Muhammad Naqvi & Adeel Javed & Salman Raza Naqvi & Kafait Ullah & Tauseef-ur-Rehman Khan & Dong Ryeol Shin, 2020. "Impact Analysis of Large-Scale Wind Farms Integration in Weak Transmission Grid from Technical Perspectives," Energies, MDPI, vol. 13(20), pages 1-32, October.
- Radünz, William Corrêa & Sakagami, Yoshiaki & Haas, Reinaldo & Petry, Adriane Prisco & Passos, Júlio César & Miqueletti, Mayara & Dias, Eduardo, 2021. "Influence of atmospheric stability on wind farm performance in complex terrain," Applied Energy, Elsevier, vol. 282(PA).
- Castellani, Francesco & Astolfi, Davide & Sdringola, Paolo & Proietti, Stefania & Terzi, Ludovico, 2017. "Analyzing wind turbine directional behavior: SCADA data mining techniques for efficiency and power assessment," Applied Energy, Elsevier, vol. 185(P2), pages 1076-1086.
- Gao, Xiaoxia & Wang, Tengyuan & Li, Bingbing & Sun, Haiying & Yang, Hongxing & Han, Zhonghe & Wang, Yu & Zhao, Fei, 2019. "Investigation of wind turbine performance coupling wake and topography effects based on LiDAR measurements and SCADA data," Applied Energy, Elsevier, vol. 255(C).
- Khan, Mehtab Ahmad & Javed, Adeel & Shakir, Sehar & Syed, Abdul Haseeb, 2021. "Optimization of a wind farm by coupled actuator disk and mesoscale models to mitigate neighboring wind farm wake interference from repowering perspective," Applied Energy, Elsevier, vol. 298(C).
- Syed, Abdul Haseeb & Javed, Adeel & Asim Feroz, Raja M. & Calhoun, Ronald, 2020. "Partial repowering analysis of a wind farm by turbine hub height variation to mitigate neighboring wind farm wake interference using mesoscale simulations," Applied Energy, Elsevier, vol. 268(C).
- Antonini, Enrico G.A. & Romero, David A. & Amon, Cristina H., 2020. "Optimal design of wind farms in complex terrains using computational fluid dynamics and adjoint methods," Applied Energy, Elsevier, vol. 261(C).
- Sun, Haiying & Gao, Xiaoxia & Yang, Hongxing, 2020. "Experimental study on wind speeds in a complex-terrain wind farm and analysis of wake effects," Applied Energy, Elsevier, vol. 272(C).
- Castellani, Francesco & Vignaroli, Andrea, 2013. "An application of the actuator disc model for wind turbine wakes calculations," Applied Energy, Elsevier, vol. 101(C), pages 432-440.
- Mingdi You & Eunshin Byon & Jionghua (Judy) Jin & Giwhyun Lee, 2017. "When wind travels through turbines: A new statistical approach for characterizing heterogeneous wake effects in multi-turbine wind farms," IISE Transactions, Taylor & Francis Journals, vol. 49(1), pages 84-95, January.
- Gao, Xiaoxia & Li, Bingbing & Wang, Tengyuan & Sun, Haiying & Yang, Hongxing & Li, Yonghua & Wang, Yu & Zhao, Fei, 2020. "Investigation and validation of 3D wake model for horizontal-axis wind turbines based on filed measurements," Applied Energy, Elsevier, vol. 260(C).
- Yan, Shu & Shi, Shaoping & Chen, Xinming & Wang, Xiaodong & Mao, Linzhi & Liu, Xiaojie, 2018. "Numerical simulations of flow interactions between steep hill terrain and large scale wind turbine," Energy, Elsevier, vol. 151(C), pages 740-747.
- Hoon Hwangbo & Andrew L. Johnson & Yu Ding, 2018. "Spline model for wake effect analysis: Characteristics of a single wake and its impacts on wind turbine power generation," IISE Transactions, Taylor & Francis Journals, vol. 50(2), pages 112-125, February.
- Takanori Uchida, 2020. "Effects of Inflow Shear on Wake Characteristics of Wind-Turbines over Flat Terrain," Energies, MDPI, vol. 13(14), pages 1-31, July.
- Xue, Zhanpu & Wang, Wei & Fang, Liqing & Zhou, Jingbo, 2020. "Numerical simulation on structural dynamics of 5 MW wind turbine," Renewable Energy, Elsevier, vol. 162(C), pages 222-233.
- Kuo, Jim Y.J. & Romero, David A. & Beck, J. Christopher & Amon, Cristina H., 2016. "Wind farm layout optimization on complex terrains – Integrating a CFD wake model with mixed-integer programming," Applied Energy, Elsevier, vol. 178(C), pages 404-414.
- Barthelmie, R.J. & Pryor, S.C., 2013. "An overview of data for wake model evaluation in the Virtual Wakes Laboratory," Applied Energy, Elsevier, vol. 104(C), pages 834-844.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wei Li & Shinai Xu & Baiyun Qian & Xiaoxia Gao & Xiaoxun Zhu & Zeqi Shi & Wei Liu & Qiaoliang Hu, 2022. "Large-Scale Wind Turbine’s Load Characteristics Excited by the Wind and Grid in Complex Terrain: A Review," Sustainability, MDPI, vol. 14(24), pages 1-29, December.
- Song, Dongran & Shen, Xutao & Gao, Yang & Wang, Lei & Du, Xin & Xu, Zhiliang & Zhang, Zhihong & Huang, Chaoneng & Yang, Jian & Dong, Mi & Joo, Young Hoo, 2023. "Application of surrogate-assisted global optimization algorithm with dimension-reduction in power optimization of floating offshore wind farm," Applied Energy, Elsevier, vol. 351(C).
- Zhou, Lei & Wen, Jiahao & Wang, Zhaokun & Deng, Pengru & Zhang, Hongfu, 2023. "High-fidelity wind turbine wake velocity prediction by surrogate model based on d-POD and LSTM," Energy, Elsevier, vol. 275(C).
- Song, Dongran & Yan, Jiaqi & Gao, Yang & Wang, Lei & Du, Xin & Xu, Zhiliang & Zhang, Zhihong & Yang, Jian & Dong, Mi & Chen, Yang, 2023. "Optimization of floating wind farm power collection system using a novel two-layer hybrid method," Applied Energy, Elsevier, vol. 348(C).
- Luo, Zhaohui & Wang, Longyan & Xu, Jian & Wang, Zilu & Yuan, Jianping & Tan, Andy C.C., 2024. "A reduced order modeling-based machine learning approach for wind turbine wake flow estimation from sparse sensor measurements," Energy, Elsevier, vol. 294(C).
- Hongtao Niu & Congxin Yang & Yin Wang, 2023. "Experimental Study on the Influence of Incoming Flow on Wind Turbine Power and Wake Based on Wavelet Analysis," Energies, MDPI, vol. 16(16), pages 1-15, August.
- Wang, Tengyuan & Cai, Chang & Liu, Junbo & Peng, Chaoyi & Wang, Yibo & Sun, Xiangyu & Zhong, Xiaohui & Zhang, Jingjing & Li, Qingan, 2024. "Wake characteristics and vortex structure evolution of floating offshore wind turbine under surge motion," Energy, Elsevier, vol. 302(C).
- Xiaoxia, Gao & Luqing, Li & Shaohai, Zhang & Xiaoxun, Zhu & Haiying, Sun & Hongxing, Yang & Yu, Wang & Hao, Lu, 2022. "LiDAR-based observation and derivation of large-scale wind turbine's wake expansion model downstream of a hill," Energy, Elsevier, vol. 259(C).
- Wen, Jiahao & Zhou, Lei & Zhang, Hongfu, 2023. "Mode interpretation of blade number effects on wake dynamics of small-scale horizontal axis wind turbine," Energy, Elsevier, vol. 263(PA).
- José Rafael Dorrego Portela & Geovanni Hernández Galvez & Quetzalcoatl Hernandez-Escobedo & Ricardo Saldaña Flores & Omar Sarracino Martínez & Orlando Lastres Danguillecourt & Pascual López de Paz & A, 2022. "Microscale Wind Assessment, Comparing Mesoscale Information and Observed Wind Data," Sustainability, MDPI, vol. 14(19), pages 1-12, September.
- Wang, Tengyuan & Cai, Chang & Wang, Xinbao & Wang, Zekun & Chen, Yewen & Song, Juanjuan & Xu, Jianzhong & Zhang, Yuning & Li, Qingan, 2023. "A new Gaussian analytical wake model validated by wind tunnel experiment and LiDAR field measurements under different turbulent flow," Energy, Elsevier, vol. 271(C).
- Zhang, Ziyu & Huang, Peng & Bitsuamlak, Girma & Cao, Shuyang, 2024. "Large-eddy simulation of upwind-hill effects on wind-turbine wakes and power performance," Energy, Elsevier, vol. 294(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Tengyuan & Cai, Chang & Wang, Xinbao & Wang, Zekun & Chen, Yewen & Song, Juanjuan & Xu, Jianzhong & Zhang, Yuning & Li, Qingan, 2023. "A new Gaussian analytical wake model validated by wind tunnel experiment and LiDAR field measurements under different turbulent flow," Energy, Elsevier, vol. 271(C).
- Xiaoxia, Gao & Luqing, Li & Shaohai, Zhang & Xiaoxun, Zhu & Haiying, Sun & Hongxing, Yang & Yu, Wang & Hao, Lu, 2022. "LiDAR-based observation and derivation of large-scale wind turbine's wake expansion model downstream of a hill," Energy, Elsevier, vol. 259(C).
- Pacheco de Sá Sarmiento, Franciene Izis & Goes Oliveira, Jorge Luiz & Passos, Júlio César, 2022. "Impact of atmospheric stability, wake effect and topography on power production at complex-terrain wind farm," Energy, Elsevier, vol. 239(PC).
- Sun, Haiying & Gao, Xiaoxia & Yang, Hongxing, 2020. "Experimental study on wind speeds in a complex-terrain wind farm and analysis of wake effects," Applied Energy, Elsevier, vol. 272(C).
- Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2024. "A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
- Fei Zhao & Yihan Gao & Tengyuan Wang & Jinsha Yuan & Xiaoxia Gao, 2020. "Experimental Study on Wake Evolution of a 1.5 MW Wind Turbine in a Complex Terrain Wind Farm Based on LiDAR Measurements," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
- Sun, Haiying & Gao, Xiaoxia & Yang, Hongxing, 2020. "A review of full-scale wind-field measurements of the wind-turbine wake effect and a measurement of the wake-interaction effect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Shu, Tong & Song, Dongran & Joo, Young Hoon, 2022. "Non-centralised coordinated optimisation for maximising offshore wind farm power via a sparse communication architecture," Applied Energy, Elsevier, vol. 324(C).
- Sun, Haiying & Qiu, Changyu & Lu, Lin & Gao, Xiaoxia & Chen, Jian & Yang, Hongxing, 2020. "Wind turbine power modelling and optimization using artificial neural network with wind field experimental data," Applied Energy, Elsevier, vol. 280(C).
- Wang, Qiang & Luo, Kun & Wu, Chunlei & Zhu, Zhaofan & Fan, Jianren, 2022. "Mesoscale simulations of a real onshore wind power base in complex terrain: Wind farm wake behavior and power production," Energy, Elsevier, vol. 241(C).
- Sun, Haiying & Yang, Hongxing & Gao, Xiaoxia, 2023. "Investigation into wind turbine wake effect on complex terrain," Energy, Elsevier, vol. 269(C).
- Fei, Zhao & Tengyuan, Wang & Xiaoxia, Gao & Haiying, Sun & Hongxing, Yang & Zhonghe, Han & Yu, Wang & Xiaoxun, Zhu, 2020. "Experimental study on wake interactions and performance of the turbines with different rotor-diameters in adjacent area of large-scale wind farm," Energy, Elsevier, vol. 199(C).
- Gao, Xiaoxia & Li, Bingbing & Wang, Tengyuan & Sun, Haiying & Yang, Hongxing & Li, Yonghua & Wang, Yu & Zhao, Fei, 2020. "Investigation and validation of 3D wake model for horizontal-axis wind turbines based on filed measurements," Applied Energy, Elsevier, vol. 260(C).
- Sun, Haiying & Yang, Hongxing, 2023. "Wind farm layout and hub height optimization with a novel wake model," Applied Energy, Elsevier, vol. 348(C).
- He, Ruiyang & Yang, Hongxing & Sun, Haiying & Gao, Xiaoxia, 2021. "A novel three-dimensional wake model based on anisotropic Gaussian distribution for wind turbine wakes," Applied Energy, Elsevier, vol. 296(C).
- Ge, Mingwei & Wu, Ying & Liu, Yongqian & Li, Qi, 2019. "A two-dimensional model based on the expansion of physical wake boundary for wind-turbine wakes," Applied Energy, Elsevier, vol. 233, pages 975-984.
- Xu, Zongyuan & Gao, Xiaoxia & Zhang, Huanqiang & Lv, Tao & Han, Zhonghe & Zhu, Xiaoxun & Wang, Yu, 2023. "Analysis of the anisotropy aerodynamic characteristics of downstream wind turbine considering the 3D wake expansion based on coupling method," Energy, Elsevier, vol. 263(PD).
- Gu, Bo & Meng, Hang & Ge, Mingwei & Zhang, Hongtao & Liu, Xinyu, 2021. "Cooperative multiagent optimization method for wind farm power delivery maximization," Energy, Elsevier, vol. 233(C).
- Zhu, Xiaoxun & Chen, Yao & Xu, Shinai & Zhang, Shaohai & Gao, Xiaoxia & Sun, Haiying & Wang, Yu & Zhao, Fei & Lv, Tiancheng, 2023. "Three-dimensional non-uniform full wake characteristics for yawed wind turbine with LiDAR-based experimental verification," Energy, Elsevier, vol. 270(C).
- Huanqiang, Zhang & Xiaoxia, Gao & Hongkun, Lu & Qiansheng, Zhao & Xiaoxun, Zhu & Yu, Wang & Fei, Zhao, 2024. "Investigation of a new 3D wake model of offshore floating wind turbines subjected to the coupling effects of wind and wave," Applied Energy, Elsevier, vol. 365(C).
More about this item
Keywords
Wake characteristics; Complex terrain; LiDARs; Filed experiments; Full-scale wind farm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:307:y:2022:i:c:s0306261921014537. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.