IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i2p596-d1566621.html
   My bibliography  Save this article

Overview of Offshore Wind Power Technologies

Author

Listed:
  • Xiaomei Ma

    (School of Physics and Electronic Information Engineering, Qinghai Normal University, Xining 810016, China)

  • Mengxue Li

    (School of Physics and Electronic Information Engineering, Qinghai Normal University, Xining 810016, China)

  • Wenquan Li

    (School of Physics and Electronic Information Engineering, Qinghai Normal University, Xining 810016, China)

  • Yongqian Liu

    (School of New Energy, North China Electric Power University, Beijing 102206, China)

Abstract

Optimizing offshore wind power technology and reducing the levelized cost of electricity throughout the lifecycle are key measures for the large-scale development of offshore wind power, contributing significantly to the transition toward sustainable energy systems. However, compared to onshore wind power, the internal flow dynamics of offshore wind farms are more complex, which poses challenges for operation and maintenance. Therefore, there is an urgent need for updated, smarter, more efficient, and economic offshore intelligent operation control technologies to facilitate the large-scale development and utilization of offshore wind power. This paper approaches the topic from two perspectives, offshore wind turbines and offshore wind farms, introducing popular research directions and technical bottlenecks in these two related fields. This includes offshore wind turbine capacity development and fundamental technologies, offshore wind power forecasting technology, and offshore wind power operation and control technology, offshore intelligent operation and maintenance technology, as well as offshore wind power and integrated marine area utilization technology. Firstly, the challenges faced by the intensive development of offshore wind resources and operational environments are analyzed. Secondly, the challenges encountered in the aforementioned technological areas and their potential solutions are summarized. Finally, a systematic reflection and outlook on the large-scale development of offshore wind power are provided, reinforcing its critical role in achieving global sustainability goals.

Suggested Citation

  • Xiaomei Ma & Mengxue Li & Wenquan Li & Yongqian Liu, 2025. "Overview of Offshore Wind Power Technologies," Sustainability, MDPI, vol. 17(2), pages 1-16, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:596-:d:1566621
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/2/596/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/2/596/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tian, Zhigang & Jin, Tongdan & Wu, Bairong & Ding, Fangfang, 2011. "Condition based maintenance optimization for wind power generation systems under continuous monitoring," Renewable Energy, Elsevier, vol. 36(5), pages 1502-1509.
    2. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    3. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2024. "Operation and maintenance management for offshore wind farms integrating inventory control and health information," Renewable Energy, Elsevier, vol. 231(C).
    4. Irawan, Chandra Ade & Ouelhadj, Djamila & Jones, Dylan & Stålhane, Magnus & Sperstad, Iver Bakken, 2017. "Optimisation of maintenance routing and scheduling for offshore wind farms," European Journal of Operational Research, Elsevier, vol. 256(1), pages 76-89.
    5. John Haslett & Adrian E. Raftery, 1989. "Space‐Time Modelling with Long‐Memory Dependence: Assessing Ireland's Wind Power Resource," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 38(1), pages 1-21, March.
    6. Sergen Tumse & Mehmet Bilgili & Alper Yildirim & Besir Sahin, 2024. "Comparative Analysis of Global Onshore and Offshore Wind Energy Characteristics and Potentials," Sustainability, MDPI, vol. 16(15), pages 1-28, August.
    7. Pinjia Zhang & Delong Lu, 2019. "A Survey of Condition Monitoring and Fault Diagnosis toward Integrated O&M for Wind Turbines," Energies, MDPI, vol. 12(14), pages 1-22, July.
    8. Liao, Hao & Hu, Weihao & Wu, Xiawei & Wang, Ni & Liu, Zhou & Huang, Qi & Chen, Cong & Chen, Zhe, 2020. "Active power dispatch optimization for offshore wind farms considering fatigue distribution," Renewable Energy, Elsevier, vol. 151(C), pages 1173-1185.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuo-Yan Chou & Xuan Loc Pham & Thi Anh Tuyet Nguyen & Tiffany Hui-Kuang Yu, 2023. "Optimal maintenance planning with special emphasis on deterioration process and vessel routing for offshore wind systems," Energy & Environment, , vol. 34(4), pages 739-763, June.
    2. He, Rui & Tian, Zhigang & Wang, Yifei & Zuo, Mingjian & Guo, Ziwei, 2023. "Condition-based maintenance optimization for multi-component systems considering prognostic information and degraded working efficiency," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    3. Nguyen, Thi-Anh-Tuyet & Chou, Shuo-Yan & Yu, Tiffany Hui-Kuang, 2022. "Developing an exhaustive optimal maintenance schedule for offshore wind turbines based on risk-assessment, technical factors and cost-effective evaluation," Energy, Elsevier, vol. 249(C).
    4. Fallahi, F. & Bakir, I. & Yildirim, M. & Ye, Z., 2022. "A chance-constrained optimization framework for wind farms to manage fleet-level availability in condition based maintenance and operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Chandra Ade Irawan & Dylan Jones, 2019. "Formulation and solution of a two-stage capacitated facility location problem with multilevel capacities," Annals of Operations Research, Springer, vol. 272(1), pages 41-67, January.
    6. Asadzadeh, S.M. & Azadeh, A., 2014. "An integrated systemic model for optimization of condition-based maintenance with human error," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 117-131.
    7. Coria, V.H. & Maximov, S. & Rivas-Dávalos, F. & Melchor, C.L. & Guardado, J.L., 2015. "Analytical method for optimization of maintenance policy based on available system failure data," Reliability Engineering and System Safety, Elsevier, vol. 135(C), pages 55-63.
    8. Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
    9. Abdollahzadeh, Hadi & Atashgar, Karim & Abbasi, Morteza, 2016. "Multi-objective opportunistic maintenance optimization of a wind farm considering limited number of maintenance groups," Renewable Energy, Elsevier, vol. 88(C), pages 247-261.
    10. Yanfang Chen & Young Hoon Joo & Dongran Song, 2022. "Multi-Objective Optimisation for Large-Scale Offshore Wind Farm Based on Decoupled Groups Operation," Energies, MDPI, vol. 15(7), pages 1-24, March.
    11. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
    12. Erdinc Akyildirim & Shaen Corbet & Guzhan Gulay & Duc Khuong Nguyen & Ahmet Sensoy, 2019. "Order Flow Persistence in Equity Spot and Futures Markets: Evidence from a Dynamic Emerging Market," Working Papers 2019-011, Department of Research, Ipag Business School.
    13. Ma, Yuanchi & Liu, Yongqian & Bai, Xinjian & Guo, Yuanjun & Yang, Zhile & Wang, Liyuan & Tao, Tao & Zhang, Lidong, 2024. "DivideMerge: A multi-vessel optimization approach for cooperative operation and maintenance scheduling in offshore wind farm," Renewable Energy, Elsevier, vol. 229(C).
    14. Les Oxley & Chris Price & William Rea & Marco Reale, 2008. "A New Procedure to Test for H Self-Similarity," Working Papers in Economics 08/16, University of Canterbury, Department of Economics and Finance.
    15. Stock-Williams, Clym & Swamy, Siddharth Krishna, 2019. "Automated daily maintenance planning for offshore wind farms," Renewable Energy, Elsevier, vol. 133(C), pages 1393-1403.
    16. Verbert, K. & De Schutter, B. & Babuška, R., 2017. "Timely condition-based maintenance planning for multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 310-321.
    17. Nguyen, Ho Si Hung & Do, Phuc & Vu, Hai-Canh & Iung, Benoit, 2019. "Dynamic maintenance grouping and routing for geographically dispersed production systems," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 392-404.
    18. Albert H. Schrotenboer & Evrim Ursavas & Iris F. A. Vis, 2019. "A Branch-and-Price-and-Cut Algorithm for Resource-Constrained Pickup and Delivery Problems," Transportation Science, INFORMS, vol. 53(4), pages 1001-1022, July.
    19. Vasile Brătian & Ana-Maria Acu & Camelia Oprean-Stan & Emil Dinga & Gabriela-Mariana Ionescu, 2021. "Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
    20. David Greasley & Les Oxley, 2010. "Cliometrics And Time Series Econometrics: Some Theory And Applications," Journal of Economic Surveys, Wiley Blackwell, vol. 24(5), pages 970-1042, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:596-:d:1566621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.