IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v371y2024ics0306261924010316.html
   My bibliography  Save this article

Impact of incoming turbulence intensity and turbine spacing on output power density: A study with two 5MW offshore wind turbines

Author

Listed:
  • Liu, Songyue
  • Li, Qiusheng
  • Lu, Bin
  • He, Junyi

Abstract

Turbulence intensity in offshore environments has significant effects on the performance of offshore wind turbines. To maximize output power of offshore wind turbines within a limited space, i.e., achieving maximum output power density, it is essential to investigate the influences of incoming turbulence intensity and turbine spacing on output power density. The Large Eddy Simulation coupled Actuator Line Method (LES-ALM) is used in this study to simulate two utility-scale NREL-5 MW wind turbines in different turbulent environments and turbine spacings. The optimal incoming turbulence intensity and turbine spacing are identified using an active learning method. The determined optimal parameters act as a benchmark for the impact analysis. The findings indicate that the increase of turbine spacing initially results in a considerable rise in the output power density of the two NREL-5 MW wind turbines, followed by a slight downward trend across various turbulent environments. The increase of the incoming turbulence leads to a steady rise of the output power density when the turbine spacing is less than 5.1D (D is the rotor diameter), while a rise followed by a decrease in the output power density is observed for the turbine spacing exceeding 5.1D. Notably, when the turbine spacing is 5.9D and the reference value of turbulence intensity is 15.2%, the output power density reaches its global maximum.

Suggested Citation

  • Liu, Songyue & Li, Qiusheng & Lu, Bin & He, Junyi, 2024. "Impact of incoming turbulence intensity and turbine spacing on output power density: A study with two 5MW offshore wind turbines," Applied Energy, Elsevier, vol. 371(C).
  • Handle: RePEc:eee:appene:v:371:y:2024:i:c:s0306261924010316
    DOI: 10.1016/j.apenergy.2024.123648
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924010316
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123648?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Qing'an & Murata, Junsuke & Endo, Masayuki & Maeda, Takao & Kamada, Yasunari, 2016. "Experimental and numerical investigation of the effect of turbulent inflow on a Horizontal Axis Wind Turbine (Part I: Power performance)," Energy, Elsevier, vol. 113(C), pages 713-722.
    2. Yang, Xiaolei & Pakula, Maggie & Sotiropoulos, Fotis, 2018. "Large-eddy simulation of a utility-scale wind farm in complex terrain," Applied Energy, Elsevier, vol. 229(C), pages 767-777.
    3. Li, Qing'an & Murata, Junsuke & Endo, Masayuki & Maeda, Takao & Kamada, Yasunari, 2016. "Experimental and numerical investigation of the effect of turbulent inflow on a Horizontal Axis Wind Turbine (part II: Wake characteristics)," Energy, Elsevier, vol. 113(C), pages 1304-1315.
    4. Han, Xingxing & Liu, Deyou & Xu, Chang & Shen, Wen Zhong, 2018. "Atmospheric stability and topography effects on wind turbine performance and wake properties in complex terrain," Renewable Energy, Elsevier, vol. 126(C), pages 640-651.
    5. De Cillis, Giovanni & Cherubini, Stefania & Semeraro, Onofrio & Leonardi, Stefano & De Palma, Pietro, 2022. "The influence of incoming turbulence on the dynamic modes of an NREL-5MW wind turbine wake," Renewable Energy, Elsevier, vol. 183(C), pages 601-616.
    6. Liu, Songyue & Li, Qiusheng & Lu, Bin & He, Junyi, 2024. "Analysis of NREL-5MW wind turbine wake under varied incoming turbulence conditions," Renewable Energy, Elsevier, vol. 224(C).
    7. Feifei Xue & Heping Duan & Chang Xu & Xingxing Han & Yanqing Shangguan & Tongtong Li & Zhefei Fen, 2022. "Research on the Power Capture and Wake Characteristics of a Wind Turbine Based on a Modified Actuator Line Model," Energies, MDPI, vol. 15(1), pages 1-20, January.
    8. Khan, Mehtab Ahmad & Javed, Adeel & Shakir, Sehar & Syed, Abdul Haseeb, 2021. "Optimization of a wind farm by coupled actuator disk and mesoscale models to mitigate neighboring wind farm wake interference from repowering perspective," Applied Energy, Elsevier, vol. 298(C).
    9. Ahmadi, Mohammad H.B. & Yang, Zhiyin, 2021. "On wind turbine power fluctuations induced by large-scale motions," Applied Energy, Elsevier, vol. 293(C).
    10. Dawei Zhan & Huanlai Xing, 2020. "Expected improvement for expensive optimization: a review," Journal of Global Optimization, Springer, vol. 78(3), pages 507-544, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Songyue & Li, Qiusheng & Lu, Bin & He, Junyi, 2024. "Analysis of NREL-5MW wind turbine wake under varied incoming turbulence conditions," Renewable Energy, Elsevier, vol. 224(C).
    2. Wen, Jiahao & Zhou, Lei & Zhang, Hongfu, 2023. "Mode interpretation of blade number effects on wake dynamics of small-scale horizontal axis wind turbine," Energy, Elsevier, vol. 263(PA).
    3. Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2024. "A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    4. Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    5. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Mori, Naoya, 2017. "Investigation of wake characteristics of a Horizontal Axis Wind Turbine in vertical axis direction with field experiments," Energy, Elsevier, vol. 141(C), pages 262-272.
    6. Li, Qing'an & Cai, Chang & Kamada, Yasunari & Maeda, Takao & Hiromori, Yuto & Zhou, Shuni & Xu, Jianzhong, 2021. "Prediction of power generation of two 30 kW Horizontal Axis Wind Turbines with Gaussian model," Energy, Elsevier, vol. 231(C).
    7. Zhang, Sanxia & Luo, Kun & Yuan, Renyu & Wang, Qiang & Wang, Jianwen & Zhang, Liru & Fan, Jianren, 2018. "Influences of operating parameters on the aerodynamics and aeroacoustics of a horizontal-axis wind turbine," Energy, Elsevier, vol. 160(C), pages 597-611.
    8. Wang, Tengyuan & Cai, Chang & Wang, Xinbao & Wang, Zekun & Chen, Yewen & Song, Juanjuan & Xu, Jianzhong & Zhang, Yuning & Li, Qingan, 2023. "A new Gaussian analytical wake model validated by wind tunnel experiment and LiDAR field measurements under different turbulent flow," Energy, Elsevier, vol. 271(C).
    9. Huanqiang, Zhang & Xiaoxia, Gao & Hongkun, Lu & Qiansheng, Zhao & Xiaoxun, Zhu & Yu, Wang & Fei, Zhao, 2024. "Investigation of a new 3D wake model of offshore floating wind turbines subjected to the coupling effects of wind and wave," Applied Energy, Elsevier, vol. 365(C).
    10. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Hiromori, Yuto, 2018. "Investigation of wake characteristic of a 30 kW rated power Horizontal Axis Wind Turbine with wake model and field measurement," Applied Energy, Elsevier, vol. 225(C), pages 1190-1204.
    11. Amin Allah, Veisi & Shafiei Mayam, Mohammad Hossein, 2017. "Large Eddy Simulation of flow around a single and two in-line horizontal-axis wind turbines," Energy, Elsevier, vol. 121(C), pages 533-544.
    12. Li, Qing'an & Wang, Ye & Kamada, Yasunari & Maeda, Takao & Xu, Jianzhong & Zhou, Shuni & Zhang, Fanghong & Cai, Chang, 2022. "Diagonal inflow effect on the wake characteristics of a horizontal axis wind turbine with Gaussian model and field measurements," Energy, Elsevier, vol. 238(PB).
    13. Bingzheng Dou & Zhanpei Yang & Michele Guala & Timing Qu & Liping Lei & Pan Zeng, 2020. "Comparison of Different Driving Modes for the Wind Turbine Wake in Wind Tunnels," Energies, MDPI, vol. 13(8), pages 1-17, April.
    14. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Murata, Junsuke & Kawabata, Toshiaki & Shimizu, Kento & Ogasawara, Tatsuhiko & Nakai, Alisa & Kasuya, Takuji, 2016. "Wind tunnel and numerical study of a straight-bladed vertical axis wind turbine in three-dimensional analysis (Part I: For predicting aerodynamic loads and performance)," Energy, Elsevier, vol. 106(C), pages 443-452.
    15. Lee, Kung-Yen & Tsao, Shao-Hua & Tzeng, Chieh-Wen & Lin, Huei-Jeng, 2018. "Influence of the vertical wind and wind direction on the power output of a small vertical-axis wind turbine installed on the rooftop of a building," Applied Energy, Elsevier, vol. 209(C), pages 383-391.
    16. Zhang, Dongqin & Liu, Zhenqing & Li, Weipeng & Hu, Gang, 2023. "LES simulation study of wind turbine aerodynamic characteristics with fluid-structure interaction analysis considering blade and tower flexibility," Energy, Elsevier, vol. 282(C).
    17. Wang, Zhenyu & Ozbay, Ahmet & Tian, Wei & Hu, Hui, 2018. "An experimental study on the aerodynamic performances and wake characteristics of an innovative dual-rotor wind turbine," Energy, Elsevier, vol. 147(C), pages 94-109.
    18. Veisi, Amin Allah & Shafiei Mayam, Mohammad Hossein, 2017. "Effects of blade rotation direction in the wake region of two in-line turbines using Large Eddy Simulation," Applied Energy, Elsevier, vol. 197(C), pages 375-392.
    19. Druault, Philippe & Gaurier, Benoît & Germain, Grégory, 2022. "Spatial integration effect on velocity spectrum: Towards an interpretation of the − 11/3 power law observed in the spectra of turbine outputs," Renewable Energy, Elsevier, vol. 181(C), pages 1062-1080.
    20. Gao, Xiaoxia & Li, Bingbing & Wang, Tengyuan & Sun, Haiying & Yang, Hongxing & Li, Yonghua & Wang, Yu & Zhao, Fei, 2020. "Investigation and validation of 3D wake model for horizontal-axis wind turbines based on filed measurements," Applied Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:371:y:2024:i:c:s0306261924010316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.