IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v231y2024ics0960148124009935.html
   My bibliography  Save this article

Enhancing the estimation of direct normal irradiance for six climate zones through machine learning models

Author

Listed:
  • Rodríguez, Eduardo
  • Droguett, Enrique López
  • Cardemil, José M.
  • Starke, Allan R.
  • Cornejo-Ponce, Lorena

Abstract

The evaluation of solar radiation is essential for large-scale solar energy systems, as assessing economic feasibility early on depends on accurate solar radiation data. Accurate sensors are needed to characterize the solar resource. Due to a scarcity of solar radiation data, numerical models are commonly used to estimate solar radiation components using meteorological variables that are simple or cheap to measure. In recent years, the use of machine learning (ML) algorithms has gained significant popularity in the estimation of solar radiation components. In this study it is proposed a post-processing approach using the separation model outcomes as input variables to estimate the diffuse fraction. Three ML models are employed (XGBoost, Random Forest, and Multilayer Perceptron) to boost the accuracy in terms of three statistical indicators: nRMSE, nMBE, and R2. The employed technique takes a distinctive approach by using reference stations to train the machine learning models and, afterward, make the assessment at the site under study. The results show an improvement in terms of precision of individual separation model outcomes. Thus, the proposed methodology may serve as a reliable approach for estimating solar radiation components in cases where historical data for a specific place of interest is not accessible.

Suggested Citation

  • Rodríguez, Eduardo & Droguett, Enrique López & Cardemil, José M. & Starke, Allan R. & Cornejo-Ponce, Lorena, 2024. "Enhancing the estimation of direct normal irradiance for six climate zones through machine learning models," Renewable Energy, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124009935
    DOI: 10.1016/j.renene.2024.120925
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124009935
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120925?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124009935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.