IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v231y2024ics0960148124009935.html
   My bibliography  Save this article

Enhancing the estimation of direct normal irradiance for six climate zones through machine learning models

Author

Listed:
  • Rodríguez, Eduardo
  • Droguett, Enrique López
  • Cardemil, José M.
  • Starke, Allan R.
  • Cornejo-Ponce, Lorena

Abstract

The evaluation of solar radiation is essential for large-scale solar energy systems, as assessing economic feasibility early on depends on accurate solar radiation data. Accurate sensors are needed to characterize the solar resource. Due to a scarcity of solar radiation data, numerical models are commonly used to estimate solar radiation components using meteorological variables that are simple or cheap to measure. In recent years, the use of machine learning (ML) algorithms has gained significant popularity in the estimation of solar radiation components. In this study it is proposed a post-processing approach using the separation model outcomes as input variables to estimate the diffuse fraction. Three ML models are employed (XGBoost, Random Forest, and Multilayer Perceptron) to boost the accuracy in terms of three statistical indicators: nRMSE, nMBE, and R2. The employed technique takes a distinctive approach by using reference stations to train the machine learning models and, afterward, make the assessment at the site under study. The results show an improvement in terms of precision of individual separation model outcomes. Thus, the proposed methodology may serve as a reliable approach for estimating solar radiation components in cases where historical data for a specific place of interest is not accessible.

Suggested Citation

  • Rodríguez, Eduardo & Droguett, Enrique López & Cardemil, José M. & Starke, Allan R. & Cornejo-Ponce, Lorena, 2024. "Enhancing the estimation of direct normal irradiance for six climate zones through machine learning models," Renewable Energy, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124009935
    DOI: 10.1016/j.renene.2024.120925
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124009935
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120925?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shamshirband, Shahaboddin & Mohammadi, Kasra & Khorasanizadeh, Hossein & Yee, Por Lip & Lee, Malrey & Petković, Dalibor & Zalnezhad, Erfan, 2016. "Estimating the diffuse solar radiation using a coupled support vector machine–wavelet transform model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 428-435.
    2. Chen, Jiang & Zhu, Weining & Yu, Qian, 2021. "Estimating half-hourly solar radiation over the Continental United States using GOES-16 data with iterative random forest," Renewable Energy, Elsevier, vol. 178(C), pages 916-929.
    3. Hasna Hissou & Said Benkirane & Azidine Guezzaz & Mourade Azrour & Abderrahim Beni-Hssane, 2023. "A Novel Machine Learning Approach for Solar Radiation Estimation," Sustainability, MDPI, vol. 15(13), pages 1-21, July.
    4. Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
    5. Cecilia Martinez-Castillo & Gonzalo Astray & Juan Carlos Mejuto, 2021. "Modelling and Prediction of Monthly Global Irradiation Using Different Prediction Models," Energies, MDPI, vol. 14(8), pages 1-16, April.
    6. Alam, Shah & Kaushik, S.C. & Garg, S.N., 2006. "Computation of beam solar radiation at normal incidence using artificial neural network," Renewable Energy, Elsevier, vol. 31(10), pages 1483-1491.
    7. Hassan, Muhammed A. & Khalil, A. & Kaseb, S. & Kassem, M.A., 2017. "Exploring the potential of tree-based ensemble methods in solar radiation modeling," Applied Energy, Elsevier, vol. 203(C), pages 897-916.
    8. Starke, Allan R. & Lemos, Leonardo F.L. & Barni, Cristian M. & Machado, Rubinei D. & Cardemil, José M. & Boland, John & Colle, Sergio, 2021. "Assessing one-minute diffuse fraction models based on worldwide climate features," Renewable Energy, Elsevier, vol. 177(C), pages 700-714.
    9. Elminir, Hamdy K. & Azzam, Yosry A. & Younes, Farag I., 2007. "Prediction of hourly and daily diffuse fraction using neural network, as compared to linear regression models," Energy, Elsevier, vol. 32(8), pages 1513-1523.
    10. Every, Jeremy P. & Li, Li & Dorrell, David G., 2020. "Köppen-Geiger climate classification adjustment of the BRL diffuse irradiation model for Australian locations," Renewable Energy, Elsevier, vol. 147(P1), pages 2453-2469.
    11. Fan, Junliang & Wu, Lifeng & Zhang, Fucang & Cai, Huanjie & Zeng, Wenzhi & Wang, Xiukang & Zou, Haiyang, 2019. "Empirical and machine learning models for predicting daily global solar radiation from sunshine duration: A review and case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 186-212.
    12. Linares-Rodriguez, Alvaro & Quesada-Ruiz, Samuel & Pozo-Vazquez, David & Tovar-Pescador, Joaquin, 2015. "An evolutionary artificial neural network ensemble model for estimating hourly direct normal irradiances from meteosat imagery," Energy, Elsevier, vol. 91(C), pages 264-273.
    13. Quan, Hao & Yang, Dazhi, 2020. "Probabilistic solar irradiance transposition models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    14. Oh, Myeongchan & Kim, Chang Ki & Kim, Boyoung & Yun, Changyeol & Kim, Jin-Young & Kang, Yongheack & Kim, Hyun-Goo, 2022. "Analysis of minute-scale variability for enhanced separation of direct and diffuse solar irradiance components using machine learning algorithms," Energy, Elsevier, vol. 241(C).
    15. López, G. & Batlles, F.J. & Tovar-Pescador, J., 2005. "Selection of input parameters to model direct solar irradiance by using artificial neural networks," Energy, Elsevier, vol. 30(9), pages 1675-1684.
    16. Yang, Dazhi, 2022. "Estimating 1-min beam and diffuse irradiance from the global irradiance: A review and an extensive worldwide comparison of latest separation models at 126 stations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    17. Alam, Shah & Kaushik, S.C. & Garg, S.N., 2009. "Assessment of diffuse solar energy under general sky condition using artificial neural network," Applied Energy, Elsevier, vol. 86(4), pages 554-564, April.
    18. Martin Hofmann & Gunther Seckmeyer, 2017. "A New Model for Estimating the Diffuse Fraction of Solar Irradiance for Photovoltaic System Simulations," Energies, MDPI, vol. 10(2), pages 1-21, February.
    19. Abreu, Edgar F.M. & Canhoto, Paulo & Costa, Maria João, 2019. "Prediction of diffuse horizontal irradiance using a new climate zone model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 28-42.
    20. Soares, Jacyra & Oliveira, Amauri P. & Boznar, Marija Zlata & Mlakar, Primoz & Escobedo, João F. & Machado, Antonio J., 2004. "Modeling hourly diffuse solar-radiation in the city of São Paulo using a neural-network technique," Applied Energy, Elsevier, vol. 79(2), pages 201-214, October.
    21. Starke, Allan R. & Lemos, Leonardo F.L. & Boland, John & Cardemil, José M. & Colle, Sergio, 2018. "Resolution of the cloud enhancement problem for one-minute diffuse radiation prediction," Renewable Energy, Elsevier, vol. 125(C), pages 472-484.
    22. Gueymard, Christian A., 2014. "A review of validation methodologies and statistical performance indicators for modeled solar radiation data: Towards a better bankability of solar projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1024-1034.
    23. Cao, Qimeng & Liu, Yan & Sun, Xue & Yang, Liu, 2022. "Country-level evaluation of solar radiation data sets using ground measurements in China," Energy, Elsevier, vol. 241(C).
    24. Feiyan Chen & Zhigao Zhou & Aiwen Lin & Jiqiang Niu & Wenmin Qin & Zhong Yang, 2019. "Evaluation of Direct Horizontal Irradiance in China Using a Physically-Based Model and Machine Learning Methods," Energies, MDPI, vol. 12(1), pages 1-19, January.
    25. Xiang Yu, 2023. "Evaluating parallelized support vector regression and nearest neighbor regression with different input variations for estimating daily global solar radiation of the humid subtropical region in China," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 18, pages 95-110.
    26. Lemos, Leonardo F.L. & Starke, Allan R. & Boland, John & Cardemil, José M. & Machado, Rubinei D. & Colle, Sergio, 2017. "Assessment of solar radiation components in Brazil using the BRL model," Renewable Energy, Elsevier, vol. 108(C), pages 569-580.
    27. Tsung-En Hsieh & Bianca Fraincas & Keh-Chin Chang, 2023. "Generation of a Typical Meteorological Year for Global Solar Radiation in Taiwan," Energies, MDPI, vol. 16(7), pages 1-13, March.
    28. Ridley, Barbara & Boland, John & Lauret, Philippe, 2010. "Modelling of diffuse solar fraction with multiple predictors," Renewable Energy, Elsevier, vol. 35(2), pages 478-483.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oh, Myeongchan & Kim, Chang Ki & Kim, Boyoung & Yun, Changyeol & Kim, Jin-Young & Kang, Yongheack & Kim, Hyun-Goo, 2022. "Analysis of minute-scale variability for enhanced separation of direct and diffuse solar irradiance components using machine learning algorithms," Energy, Elsevier, vol. 241(C).
    2. Wang, Nannan & Yue, Zijian & Liu, Yaolin & Liu, Yanfang, 2024. "Machine learning potentials for global multi-timescale diffuse irradiance estimation: Synthesizing ground observations, time-series, and environmental features," Energy, Elsevier, vol. 306(C).
    3. Yang, Dazhi, 2022. "Estimating 1-min beam and diffuse irradiance from the global irradiance: A review and an extensive worldwide comparison of latest separation models at 126 stations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Manni, Mattia & Jouttijärvi, Sami & Ranta, Samuli & Miettunen, Kati & Lobaccaro, Gabriele, 2024. "Validation of model chains for global tilted irradiance on East-West vertical bifacial photovoltaics at high latitudes," Renewable Energy, Elsevier, vol. 220(C).
    5. Castillejo-Cuberos, A. & Cardemil, J.M. & Boland, J. & Escobar, R., 2024. "Irradiance separation model parameter estimation from historical cloud cover statistical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    6. Starke, Allan R. & Lemos, Leonardo F.L. & Barni, Cristian M. & Machado, Rubinei D. & Cardemil, José M. & Boland, John & Colle, Sergio, 2021. "Assessing one-minute diffuse fraction models based on worldwide climate features," Renewable Energy, Elsevier, vol. 177(C), pages 700-714.
    7. Ruiz-Arias, José A. & Gueymard, Christian A., 2024. "Solar irradiance component separation benchmarking: The critical role of dynamically-constrained sky conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    8. Yang, Dazhi & Gu, Yizhan & Mayer, Martin János & Gueymard, Christian A. & Wang, Wenting & Kleissl, Jan & Li, Mengying & Chu, Yinghao & Bright, Jamie M., 2024. "Regime-dependent 1-min irradiance separation model with climatology clustering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    9. Hassan, Muhammed A. & Akoush, Bassem M. & Abubakr, Mohamed & Campana, Pietro Elia & Khalil, Adel, 2021. "High-resolution estimates of diffuse fraction based on dynamic definitions of sky conditions," Renewable Energy, Elsevier, vol. 169(C), pages 641-659.
    10. Dahmani, Kahina & Notton, Gilles & Voyant, Cyril & Dizene, Rabah & Nivet, Marie Laure & Paoli, Christophe & Tamas, Wani, 2016. "Multilayer Perceptron approach for estimating 5-min and hourly horizontal global irradiation from exogenous meteorological data in locations without solar measurements," Renewable Energy, Elsevier, vol. 90(C), pages 267-282.
    11. Mayer, Martin János & Yang, Dazhi, 2022. "Probabilistic photovoltaic power forecasting using a calibrated ensemble of model chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Chu, Yinghao & Yang, Dazhi & Yu, Hanxin & Zhao, Xin & Li, Mengying, 2024. "Can end-to-end data-driven models outperform traditional semi-physical models in separating 1-min irradiance?," Applied Energy, Elsevier, vol. 356(C).
    13. Mayer, Martin János, 2022. "Benefits of physical and machine learning hybridization for photovoltaic power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Starke, Allan R. & Lemos, Leonardo F.L. & Boland, John & Cardemil, José M. & Colle, Sergio, 2018. "Resolution of the cloud enhancement problem for one-minute diffuse radiation prediction," Renewable Energy, Elsevier, vol. 125(C), pages 472-484.
    15. Lou, Siwei & Li, Danny H.W. & Lam, Joseph C. & Chan, Wilco W.H., 2016. "Prediction of diffuse solar irradiance using machine learning and multivariable regression," Applied Energy, Elsevier, vol. 181(C), pages 367-374.
    16. Mohammadi, Kasra & Shamshirband, Shahaboddin & Petković, Dalibor & Khorasanizadeh, Hossein, 2016. "Determining the most important variables for diffuse solar radiation prediction using adaptive neuro-fuzzy methodology; case study: City of Kerman, Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1570-1579.
    17. Mayer, Martin János & Gróf, Gyula, 2021. "Extensive comparison of physical models for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 283(C).
    18. Bikhtiyar Ameen & Heiko Balzter & Claire Jarvis & James Wheeler, 2019. "Modelling Hourly Global Horizontal Irradiance from Satellite-Derived Datasets and Climate Variables as New Inputs with Artificial Neural Networks," Energies, MDPI, vol. 12(1), pages 1-28, January.
    19. Mayer, Martin János & Yang, Dazhi, 2023. "Pairing ensemble numerical weather prediction with ensemble physical model chain for probabilistic photovoltaic power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    20. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124009935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.