IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v220y2024ics0960148123016373.html
   My bibliography  Save this article

Validation of model chains for global tilted irradiance on East-West vertical bifacial photovoltaics at high latitudes

Author

Listed:
  • Manni, Mattia
  • Jouttijärvi, Sami
  • Ranta, Samuli
  • Miettunen, Kati
  • Lobaccaro, Gabriele

Abstract

In this paper, a methodology is introduced to identify and validate the most effective model chain to estimate solar irradiance on East-West vertical bifacial photovoltaics (E-W VBPV) at high latitudes. While previous studies mainly focused on the validation of a specific step of the model chain (i.e., decomposition or transposition stage), this work investigates the whole model chain and how the combination of different models influences the results’ accuracy. After a comprehensive review, the 29 decomposition models, which perform the best in the Nordics, and the 25 most common physical and empirical transposition models are selected and combined into 725 model chains. Each model chain is experimentally validated against 1-min data about global tilted irradiance on the front and the rear of E-W VBPV in Turku (Finland). Nine different statistical metrics are calculated to rank the model chains while describing various aspects of the model chain performance (e.g., error magnitude, bias direction, reference data fitting). The main research outcomes indicate that the accuracy and bias of the model chains differ between the East and West sides of the VBPV. Therefore, using a specific model chain for each VBPV side is recommended. In this regard, the Erbs/Steven1 (decomposition model/transposition model) model chain is the top-ranked for the East side, while the Yang2/Hay1 model chain results the best for the West side. Following this, recommendations to select appropriate solar irradiance model chains for future E-W VBPV applications at high latitudes are outlined.

Suggested Citation

  • Manni, Mattia & Jouttijärvi, Sami & Ranta, Samuli & Miettunen, Kati & Lobaccaro, Gabriele, 2024. "Validation of model chains for global tilted irradiance on East-West vertical bifacial photovoltaics at high latitudes," Renewable Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123016373
    DOI: 10.1016/j.renene.2023.119722
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123016373
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119722?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khan, M. Ryyan & Hanna, Amir & Sun, Xingshu & Alam, Muhammad A., 2017. "Vertical bifacial solar farms: Physics, design, and global optimization," Applied Energy, Elsevier, vol. 206(C), pages 240-248.
    2. Badescu, V., 2002. "3D isotropic approximation for solar diffuse irradiance on tilted surfaces," Renewable Energy, Elsevier, vol. 26(2), pages 221-233.
    3. Olmo, F.J & Vida, J & Foyo, I & Castro-Diez, Y & Alados-Arboledas, L, 1999. "Prediction of global irradiance on inclined surfaces from horizontal global irradiance," Energy, Elsevier, vol. 24(8), pages 689-704.
    4. Mondol, Jayanta Deb & Yohanis, Yigzaw G. & Norton, Brian, 2008. "Solar radiation modelling for the simulation of photovoltaic systems," Renewable Energy, Elsevier, vol. 33(5), pages 1109-1120.
    5. Starke, Allan R. & Lemos, Leonardo F.L. & Barni, Cristian M. & Machado, Rubinei D. & Cardemil, José M. & Boland, John & Colle, Sergio, 2021. "Assessing one-minute diffuse fraction models based on worldwide climate features," Renewable Energy, Elsevier, vol. 177(C), pages 700-714.
    6. Every, Jeremy P. & Li, Li & Dorrell, David G., 2020. "Köppen-Geiger climate classification adjustment of the BRL diffuse irradiation model for Australian locations," Renewable Energy, Elsevier, vol. 147(P1), pages 2453-2469.
    7. Christopher Pike & Erin Whitney & Michelle Wilber & Joshua S. Stein, 2021. "Field Performance of South-Facing and East-West Facing Bifacial Modules in the Arctic," Energies, MDPI, vol. 14(4), pages 1-15, February.
    8. Yang, Dazhi, 2022. "Estimating 1-min beam and diffuse irradiance from the global irradiance: A review and an extensive worldwide comparison of latest separation models at 126 stations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    9. Mattia Manni & Alessandro Nocente & Martin Bellmann & Gabriele Lobaccaro, 2023. "Multi-Stage Validation of a Solar Irradiance Model Chain: An Application at High Latitudes," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    10. Martin Hofmann & Gunther Seckmeyer, 2017. "Influence of Various Irradiance Models and Their Combination on Simulation Results of Photovoltaic Systems," Energies, MDPI, vol. 10(10), pages 1-24, September.
    11. Carlos Toledo & Ana Maria Gracia Amillo & Giorgio Bardizza & Jose Abad & Antonio Urbina, 2020. "Evaluation of Solar Radiation Transposition Models for Passive Energy Management and Building Integrated Photovoltaics," Energies, MDPI, vol. 13(3), pages 1-24, February.
    12. Jouttijärvi, Sami & Lobaccaro, Gabriele & Kamppinen, Aleksi & Miettunen, Kati, 2022. "Benefits of bifacial solar cells combined with low voltage power grids at high latitudes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    13. Martin Hofmann & Gunther Seckmeyer, 2017. "A New Model for Estimating the Diffuse Fraction of Solar Irradiance for Photovoltaic System Simulations," Energies, MDPI, vol. 10(2), pages 1-21, February.
    14. Abreu, Edgar F.M. & Canhoto, Paulo & Costa, Maria João, 2019. "Prediction of diffuse horizontal irradiance using a new climate zone model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 28-42.
    15. Starke, Allan R. & Lemos, Leonardo F.L. & Boland, John & Cardemil, José M. & Colle, Sergio, 2018. "Resolution of the cloud enhancement problem for one-minute diffuse radiation prediction," Renewable Energy, Elsevier, vol. 125(C), pages 472-484.
    16. Gueymard, Christian A., 2014. "A review of validation methodologies and statistical performance indicators for modeled solar radiation data: Towards a better bankability of solar projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1024-1034.
    17. Hay, John E., 1993. "Calculating solar radiation for inclined surfaces: Practical approaches," Renewable Energy, Elsevier, vol. 3(4), pages 373-380.
    18. Guo, Siyu & Walsh, Timothy Michael & Peters, Marius, 2013. "Vertically mounted bifacial photovoltaic modules: A global analysis," Energy, Elsevier, vol. 61(C), pages 447-454.
    19. Ridley, Barbara & Boland, John & Lauret, Philippe, 2010. "Modelling of diffuse solar fraction with multiple predictors," Renewable Energy, Elsevier, vol. 35(2), pages 478-483.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodríguez, Eduardo & Droguett, Enrique López & Cardemil, José M. & Starke, Allan R. & Cornejo-Ponce, Lorena, 2024. "Enhancing the estimation of direct normal irradiance for six climate zones through machine learning models," Renewable Energy, Elsevier, vol. 231(C).
    2. Yang, Dazhi, 2022. "Estimating 1-min beam and diffuse irradiance from the global irradiance: A review and an extensive worldwide comparison of latest separation models at 126 stations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Ruiz-Arias, José A. & Gueymard, Christian A., 2024. "Solar irradiance component separation benchmarking: The critical role of dynamically-constrained sky conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    4. Yang, Dazhi & Gu, Yizhan & Mayer, Martin János & Gueymard, Christian A. & Wang, Wenting & Kleissl, Jan & Li, Mengying & Chu, Yinghao & Bright, Jamie M., 2024. "Regime-dependent 1-min irradiance separation model with climatology clustering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    5. Castillejo-Cuberos, A. & Cardemil, J.M. & Boland, J. & Escobar, R., 2024. "Irradiance separation model parameter estimation from historical cloud cover statistical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    6. Mayer, Martin János, 2022. "Benefits of physical and machine learning hybridization for photovoltaic power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Wang, Nannan & Yue, Zijian & Liu, Yaolin & Liu, Yanfang, 2024. "Machine learning potentials for global multi-timescale diffuse irradiance estimation: Synthesizing ground observations, time-series, and environmental features," Energy, Elsevier, vol. 306(C).
    8. Starke, Allan R. & Lemos, Leonardo F.L. & Barni, Cristian M. & Machado, Rubinei D. & Cardemil, José M. & Boland, John & Colle, Sergio, 2021. "Assessing one-minute diffuse fraction models based on worldwide climate features," Renewable Energy, Elsevier, vol. 177(C), pages 700-714.
    9. Chu, Yinghao & Yang, Dazhi & Yu, Hanxin & Zhao, Xin & Li, Mengying, 2024. "Can end-to-end data-driven models outperform traditional semi-physical models in separating 1-min irradiance?," Applied Energy, Elsevier, vol. 356(C).
    10. Martin Hofmann & Gunther Seckmeyer, 2017. "Influence of Various Irradiance Models and Their Combination on Simulation Results of Photovoltaic Systems," Energies, MDPI, vol. 10(10), pages 1-24, September.
    11. Rahimat O. Yakubu & Maame T. Ankoh & Lena D. Mensah & David A. Quansah & Muyiwa S. Adaramola, 2022. "Predicting the Potential Energy Yield of Bifacial Solar PV Systems in Low-Latitude Region," Energies, MDPI, vol. 15(22), pages 1-17, November.
    12. Hassan, Muhammed A. & Akoush, Bassem M. & Abubakr, Mohamed & Campana, Pietro Elia & Khalil, Adel, 2021. "High-resolution estimates of diffuse fraction based on dynamic definitions of sky conditions," Renewable Energy, Elsevier, vol. 169(C), pages 641-659.
    13. Mayer, Martin János & Yang, Dazhi, 2022. "Probabilistic photovoltaic power forecasting using a calibrated ensemble of model chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Mayer, Martin János & Gróf, Gyula, 2021. "Extensive comparison of physical models for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 283(C).
    15. Mayer, Martin János & Yang, Dazhi, 2023. "Pairing ensemble numerical weather prediction with ensemble physical model chain for probabilistic photovoltaic power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    16. Ailton M. Tavares & Ricardo Conceição & Francisco M. Lopes & Hugo G. Silva, 2022. "Development of a Simple Methodology Using Meteorological Data to Evaluate Concentrating Solar Power Production Capacity," Energies, MDPI, vol. 15(20), pages 1-27, October.
    17. Oh, Myeongchan & Kim, Chang Ki & Kim, Boyoung & Yun, Changyeol & Kim, Jin-Young & Kang, Yongheack & Kim, Hyun-Goo, 2022. "Analysis of minute-scale variability for enhanced separation of direct and diffuse solar irradiance components using machine learning algorithms," Energy, Elsevier, vol. 241(C).
    18. Jouttijärvi, S. & Karttunen, L. & Ranta, S. & Miettunen, K., 2024. "Techno-economic analysis on optimizing the value of photovoltaic electricity in a high-latitude location," Applied Energy, Elsevier, vol. 361(C).
    19. de Simón-Martín, Miguel & Alonso-Tristán, Cristina & Díez-Mediavilla, Montserrat, 2017. "Diffuse solar irradiance estimation on building's façades: Review, classification and benchmarking of 30 models under all sky conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 783-802.
    20. Jianzhuang Pang & Huilan Zhang, 2023. "Global map of a comprehensive drought/flood index and analysis of controlling environmental factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 267-293, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123016373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.