IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v175y2023ics1364032123000278.html
   My bibliography  Save this article

Pairing ensemble numerical weather prediction with ensemble physical model chain for probabilistic photovoltaic power forecasting

Author

Listed:
  • Mayer, Martin János
  • Yang, Dazhi

Abstract

Under the two-step framework of photovoltaic (PV) power forecasting, that is, forecasting first the irradiance and then converting it to PV power, there are two chief ways in which one can account for the uncertainty embedded in the final PV power forecast. One of those is to produce probabilistic irradiance forecast through, for example, ensemble numerical weather prediction (NWP), and the other is to pass the irradiance forecast through a collection of different irradiance-to-power conversion sequences, which are known as model chains. This work investigates, for the first time, into the question: Whether pairing ensemble NWP with ensemble model chain is better than leveraging any individual method alone? Using data from 14 utility-scale ground-mounted PV plants in Hungary and the state-of-the-art global mesoscale NWP model of the European Centre for Medium-Range Weather Forecasts, it is herein demonstrated that the best probabilistic PV power forecast needs to consider both ensemble NWP and ensemble model chain. Furthermore, owing to the higher-quality probabilistic forecasts, the point forecast accuracy is also improved substantially through pairing. Overall, the recommended paring strategy achieves a mean-normalized continuous ranked probability score and a root mean square error of 18.4% and 42.1%, respectively.

Suggested Citation

  • Mayer, Martin János & Yang, Dazhi, 2023. "Pairing ensemble numerical weather prediction with ensemble physical model chain for probabilistic photovoltaic power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
  • Handle: RePEc:eee:rensus:v:175:y:2023:i:c:s1364032123000278
    DOI: 10.1016/j.rser.2023.113171
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123000278
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113171?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mayer, Martin János, 2022. "Benefits of physical and machine learning hybridization for photovoltaic power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Tao Hong & Pierre Pinson & Yi Wang & Rafal Weron & Dazhi Yang & Hamidreza Zareipour, 2020. "Energy forecasting: A review and outlook," WORking papers in Management Science (WORMS) WORMS/20/08, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
    3. Yang, Dazhi & Wang, Wenting & Gueymard, Christian A. & Hong, Tao & Kleissl, Jan & Huang, Jing & Perez, Marc J. & Perez, Richard & Bright, Jamie M. & Xia, Xiang’ao & van der Meer, Dennis & Peters, Ian , 2022. "A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: Towards carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Mayer, Martin János & Gróf, Gyula, 2021. "Extensive comparison of physical models for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 283(C).
    5. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    6. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    7. Mayer, Martin János & Yang, Dazhi, 2022. "Probabilistic photovoltaic power forecasting using a calibrated ensemble of model chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Mayer, Martin János, 2022. "Impact of the tilt angle, inverter sizing factor and row spacing on the photovoltaic power forecast accuracy," Applied Energy, Elsevier, vol. 323(C).
    9. Abreu, Edgar F.M. & Canhoto, Paulo & Costa, Maria João, 2019. "Prediction of diffuse horizontal irradiance using a new climate zone model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 28-42.
    10. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    11. Starke, Allan R. & Lemos, Leonardo F.L. & Boland, John & Cardemil, José M. & Colle, Sergio, 2018. "Resolution of the cloud enhancement problem for one-minute diffuse radiation prediction," Renewable Energy, Elsevier, vol. 125(C), pages 472-484.
    12. Mattei, M. & Notton, G. & Cristofari, C. & Muselli, M. & Poggi, P., 2006. "Calculation of the polycrystalline PV module temperature using a simple method of energy balance," Renewable Energy, Elsevier, vol. 31(4), pages 553-567.
    13. Ridley, Barbara & Boland, John & Lauret, Philippe, 2010. "Modelling of diffuse solar fraction with multiple predictors," Renewable Energy, Elsevier, vol. 35(2), pages 478-483.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Wencheng & Mao, Zhizhong, 2024. "Short-term photovoltaic power forecasting with feature extraction and attention mechanisms," Renewable Energy, Elsevier, vol. 226(C).
    2. Liu, Zhi-Feng & Chen, Xiao-Rui & Huang, Ya-He & Luo, Xing-Fu & Zhang, Shu-Rui & You, Guo-Dong & Qiang, Xiao-Yong & Kang, Qing, 2024. "A novel bimodal feature fusion network-based deep learning model with intelligent fusion gate mechanism for short-term photovoltaic power point-interval forecasting," Energy, Elsevier, vol. 303(C).
    3. Yang, Dazhi & Gu, Yizhan & Mayer, Martin János & Gueymard, Christian A. & Wang, Wenting & Kleissl, Jan & Li, Mengying & Chu, Yinghao & Bright, Jamie M., 2024. "Regime-dependent 1-min irradiance separation model with climatology clustering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    4. Wang, Zhongliang & Zhu, Hongyu & Zhang, Dongdong & Goh, Hui Hwang & Dong, Yunxuan & Wu, Thomas, 2023. "Modelling of wind and photovoltaic power output considering dynamic spatio-temporal correlation," Applied Energy, Elsevier, vol. 352(C).
    5. Yang, Dazhi & Yang, Guoming & Liu, Bai, 2023. "Combining quantiles of calibrated solar forecasts from ensemble numerical weather prediction," Renewable Energy, Elsevier, vol. 215(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mayer, Martin János & Yang, Dazhi, 2022. "Probabilistic photovoltaic power forecasting using a calibrated ensemble of model chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Mayer, Martin János, 2022. "Benefits of physical and machine learning hybridization for photovoltaic power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Mayer, Martin János & Yang, Dazhi & Szintai, Balázs, 2023. "Comparing global and regional downscaled NWP models for irradiance and photovoltaic power forecasting: ECMWF versus AROME," Applied Energy, Elsevier, vol. 352(C).
    4. Mayer, Martin János & Yang, Dazhi, 2023. "Calibration of deterministic NWP forecasts and its impact on verification," International Journal of Forecasting, Elsevier, vol. 39(2), pages 981-991.
    5. Wang, Wenting & Guo, Yufeng & Yang, Dazhi & Zhang, Zili & Kleissl, Jan & van der Meer, Dennis & Yang, Guoming & Hong, Tao & Liu, Bai & Huang, Nantian & Mayer, Martin János, 2024. "Economics of physics-based solar forecasting in power system day-ahead scheduling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    6. Yang, Dazhi & Gu, Yizhan & Mayer, Martin János & Gueymard, Christian A. & Wang, Wenting & Kleissl, Jan & Li, Mengying & Chu, Yinghao & Bright, Jamie M., 2024. "Regime-dependent 1-min irradiance separation model with climatology clustering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    7. Mayer, Martin János, 2022. "Impact of the tilt angle, inverter sizing factor and row spacing on the photovoltaic power forecast accuracy," Applied Energy, Elsevier, vol. 323(C).
    8. Yang, Dazhi & Kleissl, Jan, 2023. "Summarizing ensemble NWP forecasts for grid operators: Consistency, elicitability, and economic value," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1640-1654.
    9. Yang, Dazhi, 2022. "Estimating 1-min beam and diffuse irradiance from the global irradiance: A review and an extensive worldwide comparison of latest separation models at 126 stations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    10. Yang, Dazhi & Yang, Guoming & Liu, Bai, 2023. "Combining quantiles of calibrated solar forecasts from ensemble numerical weather prediction," Renewable Energy, Elsevier, vol. 215(C).
    11. Markovics, Dávid & Mayer, Martin János, 2022. "Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    12. Chu, Yinghao & Yang, Dazhi & Yu, Hanxin & Zhao, Xin & Li, Mengying, 2024. "Can end-to-end data-driven models outperform traditional semi-physical models in separating 1-min irradiance?," Applied Energy, Elsevier, vol. 356(C).
    13. Mayer, Martin János & Gróf, Gyula, 2021. "Extensive comparison of physical models for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 283(C).
    14. Weronika Nitka & Rafał Weron, 2023. "Combining predictive distributions of electricity prices. Does minimizing the CRPS lead to optimal decisions in day-ahead bidding?," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 33(3), pages 105-118.
    15. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    16. Liu, Bai & Yang, Dazhi & Mayer, Martin János & Coimbra, Carlos F.M. & Kleissl, Jan & Kay, Merlinde & Wang, Wenting & Bright, Jamie M. & Xia, Xiang’ao & Lv, Xin & Srinivasan, Dipti & Wu, Yan & Beyer, H, 2023. "Predictability and forecast skill of solar irradiance over the contiguous United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    17. Visser, L.R. & AlSkaif, T.A. & Khurram, A. & Kleissl, J. & van Sark, W.G.H.J.M., 2024. "Probabilistic solar power forecasting: An economic and technical evaluation of an optimal market bidding strategy," Applied Energy, Elsevier, vol. 370(C).
    18. Manni, Mattia & Jouttijärvi, Sami & Ranta, Samuli & Miettunen, Kati & Lobaccaro, Gabriele, 2024. "Validation of model chains for global tilted irradiance on East-West vertical bifacial photovoltaics at high latitudes," Renewable Energy, Elsevier, vol. 220(C).
    19. Jonathan Berrisch & Florian Ziel, 2022. "Distributional modeling and forecasting of natural gas prices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1065-1086, September.
    20. Yang, Dazhi, 2022. "Correlogram, predictability error growth, and bounds of mean square error of solar irradiance forecasts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:175:y:2023:i:c:s1364032123000278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.