IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v230y2024ics0960148124008966.html
   My bibliography  Save this article

Approaches to improve the accuracy of estimating the diffuse fraction of 1-min resolution global horizontal irradiance using cloud images

Author

Listed:
  • Fan, Jie
  • Wang, Lei
  • Zhang, Zhen
  • Liu, Ming
  • Cao, Xinyue
  • Gong, Min
  • Tang, Qiuping
  • She, Chao
  • Qi, Fang
  • Si, Hucheng
  • Song, Dan
  • Zhang, Qiyuan
  • Xie, Peng

Abstract

Obtaining high-precision diffuse irradiance from global horizontal irradiance (GHI) can serve comprehensive and effective data for PV system design, operation and maintenance. This study has incorporated cloud features in an artificial neural network (ANN) model to improve the estimation accuracy of diffuse fraction on 1-min resolution dataset. The cloud features are extracted from ground-based cloud images, including spectrum features, texture features and cloud cover ratio, with image processing algorithms. After data validation, the ANN model which incorporated all the cloud features has achieved a normalized root mean square error (NRMSE) of 17.1 %, representing a 13 % reduction compared to the basic ANN model, we have investigated additional strategies that further optimize the model performance, including cloud classification, weather classification and data averaging, and quantified the effects of the proposed approaches based on actual station data. The data averaging based on proper time scale has brought about 2 % in accuracy improvement; the weather classification and cloud classification have both brought above 10 % of accuracy improvement in some cases but others may deteriorate for some reasons that need to be further investigated, based on this, we have analyzed and summarized the deficiencies in our research and proposed detailed research directions for future endeavors.

Suggested Citation

  • Fan, Jie & Wang, Lei & Zhang, Zhen & Liu, Ming & Cao, Xinyue & Gong, Min & Tang, Qiuping & She, Chao & Qi, Fang & Si, Hucheng & Song, Dan & Zhang, Qiyuan & Xie, Peng, 2024. "Approaches to improve the accuracy of estimating the diffuse fraction of 1-min resolution global horizontal irradiance using cloud images," Renewable Energy, Elsevier, vol. 230(C).
  • Handle: RePEc:eee:renene:v:230:y:2024:i:c:s0960148124008966
    DOI: 10.1016/j.renene.2024.120828
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124008966
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120828?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:230:y:2024:i:c:s0960148124008966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.