IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipcs0960148124017592.html
   My bibliography  Save this article

Short-term forecast of solar irradiance components using an alternative mathematical approach for the identification of cloud features

Author

Listed:
  • Peña-Cruz, Manuel I.
  • Díaz-Ponce, Arturo
  • Sánchez-Segura, César D.
  • Valentín-Coronado, Luis
  • Moctezuma, Daniela

Abstract

Solar energy technologies require precise solar forecasting to reduce power generation losses and protect equipment from irradiance fluctuations. This study introduces an alternative methodology for short-term forecasting of direct normal irradiance (DNI) and global horizontal irradiance (GHI) utilizing ground-based sky images captured by a single device. A low-cost all-sky imager (ASI) was developed, which implements an angular transformation and an optical flow technique to extract cloud features such as shape and velocity. A mathematical model calculates cloud transmittance based on pixel intensity, eliminating complex training steps. Results from a 30-day experimental campaign, incorporating diverse meteorological conditions, were compared against a secondary standard solarimetric station, a smart persistence model, and state-of-the-art approaches. The DNI forecast achieved an RMSE (relative error) of 46.79 W/m2 (11.99%) for 1-min intervals and 90.21 W/m2 (17.54%) for 10-min intervals, while GHI ranged from 31.73 W/m2 (4.68%) to 75.02 W/m2 (13.63%). Pearson correlation coefficients exceeded 0.9 overall, reaching 0.98 and 0.99 for the 1-min DNI and GHI forecasts, and 0.91 and 0.96 for the 10-min DNI and GHI forecasts, respectively, underscoring the system’s accuracy and robustness in complex meteorological scenarios.

Suggested Citation

  • Peña-Cruz, Manuel I. & Díaz-Ponce, Arturo & Sánchez-Segura, César D. & Valentín-Coronado, Luis & Moctezuma, Daniela, 2024. "Short-term forecast of solar irradiance components using an alternative mathematical approach for the identification of cloud features," Renewable Energy, Elsevier, vol. 237(PC).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124017592
    DOI: 10.1016/j.renene.2024.121691
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124017592
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121691?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rodríguez-Benítez, Francisco J. & López-Cuesta, Miguel & Arbizu-Barrena, Clara & Fernández-León, María M. & Pamos-Ureña, Miguel Á. & Tovar-Pescador, Joaquín & Santos-Alamillos, Francisco J. & Pozo-Váz, 2021. "Assessment of new solar radiation nowcasting methods based on sky-camera and satellite imagery," Applied Energy, Elsevier, vol. 292(C).
    2. Logothetis, Stavros-Andreas & Salamalikis, Vasileios & Wilbert, Stefan & Remund, Jan & Zarzalejo, Luis F. & Xie, Yu & Nouri, Bijan & Ntavelis, Evangelos & Nou, Julien & Hendrikx, Niels & Visser, Lenna, 2022. "Benchmarking of solar irradiance nowcast performance derived from all-sky imagers," Renewable Energy, Elsevier, vol. 199(C), pages 246-261.
    3. Chu, Yinghao & Li, Mengying & Coimbra, Carlos F.M., 2016. "Sun-tracking imaging system for intra-hour DNI forecasts," Renewable Energy, Elsevier, vol. 96(PA), pages 792-799.
    4. Huang, Xiaoqiao & Liu, Jun & Xu, Shaozhen & Li, Chengli & Li, Qiong & Tai, Yonghang, 2023. "A 3D ConvLSTM-CNN network based on multi-channel color extraction for ultra-short-term solar irradiance forecasting," Energy, Elsevier, vol. 272(C).
    5. Liu, Jingxuan & Zang, Haixiang & Ding, Tao & Cheng, Lilin & Wei, Zhinong & Sun, Guoqiang, 2023. "Harvesting spatiotemporal correlation from sky image sequence to improve ultra-short-term solar irradiance forecasting," Renewable Energy, Elsevier, vol. 209(C), pages 619-631.
    6. Li, Mengying & Chu, Yinghao & Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2016. "Quantitative evaluation of the impact of cloud transmittance and cloud velocity on the accuracy of short-term DNI forecasts," Renewable Energy, Elsevier, vol. 86(C), pages 1362-1371.
    7. Chu, Yinghao & Li, Mengying & Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2015. "Real-time prediction intervals for intra-hour DNI forecasts," Renewable Energy, Elsevier, vol. 83(C), pages 234-244.
    8. Chu, Yinghao & Coimbra, Carlos F.M., 2017. "Short-term probabilistic forecasts for Direct Normal Irradiance," Renewable Energy, Elsevier, vol. 101(C), pages 526-536.
    9. Escrig, H. & Batlles, F.J. & Alonso, J. & Baena, F.M. & Bosch, J.L. & Salbidegoitia, I.B. & Burgaleta, J.I., 2013. "Cloud detection, classification and motion estimation using geostationary satellite imagery for cloud cover forecast," Energy, Elsevier, vol. 55(C), pages 853-859.
    10. Kamadinata, Jane Oktavia & Ken, Tan Lit & Suwa, Tohru, 2019. "Sky image-based solar irradiance prediction methodologies using artificial neural networks," Renewable Energy, Elsevier, vol. 134(C), pages 837-845.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiangsheng Bu & Shuyi Zhuang & Fei Luo & Zhigang Ye & Yubo Yuan & Tianrui Ma & Tao Da, 2024. "Improving Solar Radiation Forecasting in Cloudy Conditions by Integrating Satellite Observations," Energies, MDPI, vol. 17(24), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Fan & Zhang, Yao & Wang, Jianxue, 2023. "Recent advances in intra-hour solar forecasting: A review of ground-based sky image methods," International Journal of Forecasting, Elsevier, vol. 39(1), pages 244-265.
    2. Chu, Yinghao & Li, Mengying & Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2022. "A network of sky imagers for spatial solar irradiance assessment," Renewable Energy, Elsevier, vol. 187(C), pages 1009-1019.
    3. Liao, Zhouyi & Coimbra, Carlos F.M., 2024. "Hybrid solar irradiance nowcasting and forecasting with the SCOPE method and convolutional neural networks," Renewable Energy, Elsevier, vol. 232(C).
    4. Chen, Shanlin & Li, Mengying, 2022. "Improved turbidity estimation from local meteorological data for solar resourcing and forecasting applications," Renewable Energy, Elsevier, vol. 189(C), pages 259-272.
    5. Zang, Haixiang & Chen, Dianhao & Liu, Jingxuan & Cheng, Lilin & Sun, Guoqiang & Wei, Zhinong, 2024. "Improving ultra-short-term photovoltaic power forecasting using a novel sky-image-based framework considering spatial-temporal feature interaction," Energy, Elsevier, vol. 293(C).
    6. Niu, Yinsen & Song, Jifeng & Zou, Lianglin & Yan, Zixuan & Lin, Xilong, 2024. "Cloud detection method using ground-based sky images based on clear sky library and superpixel local threshold," Renewable Energy, Elsevier, vol. 226(C).
    7. Xie, Qiyue & Ma, Lin & Liu, Yao & Fu, Qiang & Shen, Zhongli & Wang, Xiaoli, 2023. "An improved SSA-BiLSTM-based short-term irradiance prediction model via sky images feature extraction," Renewable Energy, Elsevier, vol. 219(P2).
    8. Chu, Yinghao & Wang, Yiling & Yang, Dazhi & Chen, Shanlin & Li, Mengying, 2024. "A review of distributed solar forecasting with remote sensing and deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    9. Nie, Yuhao & Li, Xiatong & Paletta, Quentin & Aragon, Max & Scott, Andea & Brandt, Adam, 2024. "Open-source sky image datasets for solar forecasting with deep learning: A comprehensive survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    10. Chu, Yinghao & Coimbra, Carlos F.M., 2017. "Short-term probabilistic forecasts for Direct Normal Irradiance," Renewable Energy, Elsevier, vol. 101(C), pages 526-536.
    11. Guo, Su & Liu, Deyou & Chen, Xingying & Chu, Yinghao & Xu, Chang & Liu, Qunming & Zhou, Ling, 2017. "Model and control scheme for recirculation mode direct steam generation parabolic trough solar power plants," Applied Energy, Elsevier, vol. 202(C), pages 700-714.
    12. Liu, Jingxuan & Zang, Haixiang & Cheng, Lilin & Ding, Tao & Wei, Zhinong & Sun, Guoqiang, 2023. "A Transformer-based multimodal-learning framework using sky images for ultra-short-term solar irradiance forecasting," Applied Energy, Elsevier, vol. 342(C).
    13. Garcia, Dário & Liang, Dawei & Almeida, Joana & Catela, Miguel & Costa, Hugo & Tibúrcio, Bruno D. & Guillot, Emmanuel & Vistas, Cláudia R., 2023. "Lowest-threshold solar laser operation under cloudy sky condition," Renewable Energy, Elsevier, vol. 210(C), pages 127-133.
    14. Benali, L. & Notton, G. & Fouilloy, A. & Voyant, C. & Dizene, R., 2019. "Solar radiation forecasting using artificial neural network and random forest methods: Application to normal beam, horizontal diffuse and global components," Renewable Energy, Elsevier, vol. 132(C), pages 871-884.
    15. Rodríguez, Fermín & Galarza, Ainhoa & Vasquez, Juan C. & Guerrero, Josep M., 2022. "Using deep learning and meteorological parameters to forecast the photovoltaic generators intra-hour output power interval for smart grid control," Energy, Elsevier, vol. 239(PB).
    16. van der Meer, D.W. & Widén, J. & Munkhammar, J., 2018. "Review on probabilistic forecasting of photovoltaic power production and electricity consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1484-1512.
    17. Logothetis, Stavros-Andreas & Salamalikis, Vasileios & Wilbert, Stefan & Remund, Jan & Zarzalejo, Luis F. & Xie, Yu & Nouri, Bijan & Ntavelis, Evangelos & Nou, Julien & Hendrikx, Niels & Visser, Lenna, 2022. "Benchmarking of solar irradiance nowcast performance derived from all-sky imagers," Renewable Energy, Elsevier, vol. 199(C), pages 246-261.
    18. Chen, Shanlin & Li, Chengxi & Xie, Yuying & Li, Mengying, 2023. "Global and direct solar irradiance estimation using deep learning and selected spectral satellite images," Applied Energy, Elsevier, vol. 352(C).
    19. Zhu, Tingting & Wei, Haikun & Zhao, Xin & Zhang, Chi & Zhang, Kanjian, 2017. "Clear-sky model for wavelet forecast of direct normal irradiance," Renewable Energy, Elsevier, vol. 104(C), pages 1-8.
    20. Paletta, Quentin & Hu, Anthony & Arbod, Guillaume & Lasenby, Joan, 2022. "ECLIPSE: Envisioning CLoud Induced Perturbations in Solar Energy," Applied Energy, Elsevier, vol. 326(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124017592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.